This report is intended to collect, present, and evaluate the various solutions applied in individual operational pilots for their (upscaling and transnational transfer) potential, in terms of opportunities and barriers, over the short and long(er)-term. This is done by identifying the main characteristics of the solutions and sites and the relevant influencing factors at different local (dimension) contexts.The analysis provides insights in barriers but also opportunities and conditions for success across four main dimensions that make up the local context landscape. We consider two main roll-out scenarios:1. Upscaling within the boundaries of the country where the operational pilot (OP) took place2. Transnational Transfer relates to the potential for transferring a (V4)ES solution to any of the other three (project) countriesThere are several aspects within the four main dimensions that are cross-cutting for all four countries, either because EU legislation lies at its roots, or because market conditions are fairly similar for certain influencing factors in those dimension.Ultimately, both Smart Charging and V2X market are still in their relevant infancies. The solutions applied in various SEEV4-City pilots are relatively straightforward and simple in ‘smartness’. This helps the potential for adoption but may not always be the optimal solution yet. The Peak shaving or load/demand shifting solutions are viable options to reduce costs for different stakeholders in the (electricity) supply chain. The market is likely to mature and become much smarter in coming 5 – 10 years. This also includes the evolvement (or spin-offs) of the solutions applied in SEEV4-_City as well. At least in the coming (approximately) 5 years Smart Charging appears to have the better financial business case and potential for large scale roll-out with less (impactful) bottlenecks, but looking at longer term V2X holds its potential to play a significant role in the energy transition.A common denominator as primary barriers relates to existing regulation, standards readiness and limited market availability of either hardware or service offerings.
DOCUMENT
In order to gain a more mature share in the future energy supply, green gas supply chains face some interesting challenges. In this thesis green gas supply chains, based on codigestion of cow manure and maize, are considered. The produced biogas is upgraded to natural gas quality and injected into the existing distribution gas grid and thus replacing natural gas. Literature research showed that relatively much attention has been paid up to now to elements of such supply chains. Research into digestion technology, agricultural aspects of (energy) crops and logistics of biomass are examples of this. This knowledge is indispensable, but how this knowledge should be combined to help understand how future green gas systems may look like, remains a white spot in the current knowledge. This thesis is an effort to fill this gap. A practical but sound way of modeling green gassupply chains was developed, taking costs and sustainability criteria into account. The way such supply chains can deal with season dependent gas demand was also investigated. This research was further expanded into a geographical model to simulate several degrees of natural gas replacement by green gas. Finally, ways to optimize green gas supply chains in terms of energy efficiency and greenhouse gas reduction were explored.
DOCUMENT