Background: Patients with Senning repair for complete transposition of the great arteries (d-TGA) show an impaired exercise tolerance. Our aim was to investigate changes in exercise capacity in children, adolescents and adults with Senning operation. Methods: Peak oxygen uptake (peak VO2), oxygen pulse and heart rate were assessed by cardiopulmonary exercise tests (CPET) and compared to normal values. Rates of change were calculated by linear regression analysis. Right ventricular (RV) function was assessed by echocardiography. Results: Thirty-four patients (22 male) performed 3.5 (range 3–6) CPET with an interval of ≥ 6 months. Mean age at first assessment was 16.4 ± 4.27 years. Follow-up period averaged 6.8 ± 2 years. Exercise capacity was reduced (p<0.0005) and the decline of peak VO2 (−1.3 ± 3.7 %/year; p=0.015) and peak oxygen pulse (−1.4 ± 3.0 %/year; p=0.011) was larger than normal, especially before adulthood and in female patients (p<0.01). During adulthood, RV contractility changes were significantly correlated with the decline of peak oxygen pulse (r= −0.504; p=0.047). Conclusions: In patients with Senning operation for d-TGA, peak VO2 and peak oxygen pulse decrease faster with age compared to healthy controls. This decline is most obvious during childhood and adolescence, and suggests the inability to increase stroke volume to the same extent as healthy peers during growth. Peak VO2 and peak oxygen pulse remain relatively stable during early adulthood. However, when RV contractility decreases, a faster decline in peak oxygen pulse is observed
BACKGROUND: Patients who underwent surgery for aortic coarctation (COA) have an increased risk of arterial hypertension. We aimed at evaluating (1) differences between hypertensive and non-hypertensive patients and (2) the value of cardiopulmonary exercise testing (CPET) to predict the development or progression of hypertension. METHODS: Between 1999 and 2010, CPET was performed in 223 COA-patients of whom 122 had resting blood pressures of <140/90 mmHg without medication, and 101 were considered hypertensive. Comparative statistics were performed. Cox regression analysis was used to assess the relation between demographic, clinical and exercise variables and the development/progression of hypertension. RESULTS: At baseline, hypertensive patients were older (p=0.007), were more often male (p=0.004) and had repair at later age (p=0.008) when compared to normotensive patients. After 3.6 ± 1.2 years, 29/120 (25%) normotensive patients developed hypertension. In normotensives, VE/VCO2-slope (p=0.0016) and peak systolic blood pressure (SBP; p=0.049) were significantly related to the development of hypertension during follow-up. Cut-off points related to higher risk for hypertension, based on best sensitivity and specificity, were defined as VE/VCO2-slope ≥ 27 and peak SBP ≥ 220 mmHg. In the hypertensive group, antihypertensive medication was started/extended in 48/101 (48%) patients. Only age was associated with the need to start/extend antihypertensive therapy in this group (p=0.042). CONCLUSIONS: Higher VE/VCO2-slope and higher peak SBP are risk factors for the development of hypertension in adults with COA. Cardiopulmonary exercise testing may guide clinical decision making regarding close blood pressure control and preventive lifestyle recommendations.
Purpose: To determine exercise response during cardiopulmonary exercise testing in children and adolescents with dystrophinopathies. Methods: Exercise response on the cardiopulmonary exercise test (CPET) was compared with a standard care test protocol. Results: Nine boys (aged 10.8 ± 4.7 years) with Becker muscular dystrophy (n = 6) and Duchenne muscular dystrophy (n = 3) were included. The feasibility of the CPET was similar to a standard care test protocol, and no serious adverse events occurred. In 67% of the subjects with normal or only mildly impaired functional capacity, the CPET could be used to detect moderate to severe cardiopulmonary exercise limitations. Conclusions: The CPET seems to be a promising outcome measure for cardiopulmonary exercise limitations in youth with mild functional limitations. Further research with larger samples is warranted to confirm current findings and investigate the additional value of the CPET to longitudinal follow-up of cardiomyopathy and the development of safe exercise programs for youth with dystrophinopathies.
LINK