The recycling of post consumer cotton textile waste is highly requested, due to the high environmental impact of cotton production. Often cotton is mixed in blends with polyethylene terephthalate (PET). For the generation of high value products from recycled cotton, it essential that PET is separated from the cotton first. In this contribution, the depolymerization of PET in cotton / PET blend is investigated for the separation of PET from cotton fibers. Ionic liquids and NaOH are used as catalysts for the depolymerization reaction in ethylene glycol (glycolysis). It will be shown that ionic liquids have no significant influence on the conversion of PET. However, 99% conversion is achieved in this process with 2 w/w % NaOH as catalyst. This enables the selective depolymerization of PET in presence of cotton and gives rise to an easy separation of cotton from cotton / PET blends.Paper for the 14th World Textile Conference, May 26th-28th2014, Bursa, Turkey.
MULTIFILE
The scope of this thesis of Gerrit Bouwhuis, lecturer at Saxion Research Centre for Design and Technology in Enschede is the development of a new industrial applicable pre-treatment process for cotton based on catalysis. The pre-treatment generally consists of desizing, scouring and bleaching. These processes can be continuous or batch wise. Advances in the science of biocatalytic pre-treatment of cotton and catalytic bleaching formed the scientific basis for this work. The work of Agrawal on enzymes for bio-scouring and of Topalovic on catalytic bleaching led to the conclusion that reduced reaction temperatures for the pre-treatment processes of cotton are possible. A second reason for the present work is a persistent and strong pressure on the industry to implement ‘more sustainable’ and environmental friendlier processes. It was clear that for the industrial implementation of the newly developed process it would be necessary to ‘translate’ the academic knowledge based on the catalysts, into a process at conditions that are applicable in textile industry. Previous experiences learned that the transition from academic knowledge into industrial applicable processes often failed. This is caused by lack of experience of university researchers with industrial product and process development as well as a lack of awareness of industrial developers of academic research. This is especially evident for the so-called Small and Medium Enterprises (SME’s). To overcome this gap a first step was to organize collaboration between academic institutes and industries. The basis for the collaboration was the prospect of this work for benefits for all parties involved. A rational approach has been adopted by first gathering knowledge about the properties and morphology of cotton and the know how on the conventional pre-treatment process. To be able to understand the conventional processes it was necessary not only to explore the chemical and physical aspects but also to evaluate the process conditions and equipment that are used. This information has been the basis for the present lab research on combined bio-catalytic desizing and scouring as well as catalytic bleaching. For the measurement of the performance of the treatments and the process steps, the performance indicators have been evaluated and selected. Here the choice has been made to use industrially known and accepted performance indicators. For the new bio-catalytic pre-treatment an enzyme cocktail, consisting of amylase, cutinase and pectinase has been developed. The process conditions in the enzyme cocktail tests have been explored reflecting different pre-treatment equipment as they are used in practice and for their different operation conditions. The exploration showed that combined bio-catalytic desizing and scouring seemed attractive for industrial application, with major reduction of the reaction and the rinsing temperatures, leading to several advantages. The performance of this treatment, when compared with the existing industrial treatment showed that the quality of the treated fabric was comparable or better than the present industrial standard, while concentrations enzymes in the cocktail have not yet been fully optimized. To explore the application of a manganese catalyst in the bleaching step of the pre-treatment process the fabrics were treated with the enzyme cocktail prior to the bleaching. It has been decided not to use conventional pre-treatment processes because in that case the combined desizing and scouring step would not be integrated in the newly developed process. To explore catalytic bleaching it has been tried to mimic the existing industrial processes where possible. The use of the catalyst at 100°C, as occurs in a conventional steamer, leads to decomposition of the catalyst and thus no bleach activation occurs. This led to the conclusion that catalytic bleaching is not possible in present steamers nor at low temperatur
MULTIFILE
The catalytic coconversion of glycerol and toluene (93/7 wt %) over a technical H-ZSM-5/Al2O3 (60-40 wt %) catalyst was studied, aiming for enhanced production of biobased benzene, toluene, and xylenes (bio-BTX). When using glycerol/toluene cofeed with a mass ratio of 93/7 wt %, a peak BTX carbon yield of 29.7 ± 1.1 C.% (at time on stream (TOS) of 1.5-2.5 h), and an overall BTX carbon yield of 28.7 C.% (during TOS of 8.5 h) were obtained, which are considerably higher than those (19.1 ± 0.4 C.% and 11.0 C.%) for glycerol alone. Synergetic effects when cofeeding toluene on the peak and overall BTX carbon yields were observed and quantified, showing a relative increase of 3.1% and 30.0% for the peak and overall BTX carbon yield (based on the feedstock). These findings indicate that the strategy of cofeeding in situ produced toluene for the conversion of glycerol to aromatics has potential to increase BTX yields. In addition, BTX production on the catalyst (based on the fresh catalyst during the first run for TOS of 8.5 h and without regeneration) is significantly improved to 0.547 ton ton-1catalyst (excluding the 76% of toluene product that is 0.595 ton ton-1catalyst for the recycle in the cofeed) for glycerol/toluene cofeed, which was 0.426 ton ton-1catalyst for glycerol alone. In particular, this self-sufficient toluene product recycling strategy is advantageous for the production and selectivity (relative increase of 84.4% and 43.5% during TOS of 8.5 h) of biobased xylenes.
Paper sludge contains papermaking mineral additives and fibers, which could be reused or recycled, thus enhancing the circularity. One of the promising technologies is the fast pyrolysis of paper sludge, which is capable of recovering > 99 wt.% of the fine minerals in the paper sludge and also affording a bio-liquid. The fine minerals (e.g., ‘circular’ CaCO3) can be reused as filler in consumer products thereby reducing the required primary resources. However, the bio-liquid has a lower quality compared to fossil fuels, and only a limited application, e.g., for heat generation, has been applied. This could be significantly improved by catalytic upgrading of the fast pyrolysis vapor, known as an ex-situ catalytic pyrolysis approach. We have recently found that a high-quality bio-oil (mainly ‘bio-based’ paraffins and low-molecular-weight aromatics, carbon yield of 21%, and HHV of 41.1 MJ kg-1) was produced (Chem. Eng. J., 420 (2021), 129714). Nevertheless, catalyst deactivation occurred after a few hours’ of reaction. As such, catalyst stability and regenerability are of research interest and also of high relevance for industrial implementation. This project aims to study the potential of the add-on catalytic upgrading step to the industrial fast pyrolysis of paper sludge process. One important performance metric for sustainable catalysis in the industry is the level of catalyst consumption (kgcat tprod-1) for catalytic pyrolysis of paper sludge. Another important research topic is to establish the correlation between yield and selectivity of the bio-chemicals and the catalyst characteristics. For this, different types of catalysts (e.g., FCC-type E-Cat) will be tested and several reaction-regeneration cycles will be performed. These studies will determine under which conditions catalytic fast pyrolysis of paper sludge is technically and economically viable.
In the context of sustainability, the use of biocatalysis in organic synthesis is increasingly observed as an essential tool towards a modern and ‘green’ chemical industry. However, the lack of a diverse set of commercially available enzymes with a broad selectivity toward industrially-relevant substrates keeps hampering the widespread implementation of biocatalysis. Aminoverse B.V. aims to contribute to this challenge by developing enzymatic screening kits and identifying novel enzyme families with significant potential for biocatalysis. One of the most important, yet notoriously challenging reaction in organic synthesis is site-selective functionalization (e.g. hydroxylation) of inert C-H bonds. Interestingly, Fe(II)/α-ketoglutarate-dependent oxygenases (KGOs) have been found to perform C-H hydroxylation, as well as other oxyfunctionalization, spontaneously in nature. However, as KGOs are not commercially available, or even extensively studied in this context, their potential is not readily accessible to the chemical industry. This project aims to demonstrate the potential of KGOs in biocatalysis. In order to achieve this, the following challenges will be addressed: i) establishing an enzymatic screening methodology to study the activity and selectivity of recombinant KGOs towards industrially relevant substrates, ii) establishing analytical methods to characterize KGO-catalyzed substrate conversion and product formation. Eventually, the proof-of-principle demonstrated during this project will allow Aminoverse B.V. to develop a commercial biocatalysis kit comprised of KGO enzymes with a diverse activity profile, allowing their application in the sustainable production of either commodity, fine or speciality chemicals. The project consortium is composed of: i) Aminoverse B.V, a start-up company dedicated to facilitate chemical partners towards implementing biocatalysis in their chemical processes, and ii) Zuyd University, which will link Aminoverse B.V. with students and (bio)chemical professionals in creating a novel collaboration which will not only stimulate the development of (bio)chemical students, but also the translation of academic knowledge on KGOs towards a feasible biocatalytic application.