This study provides insights into novel combinations of hydrothermal modifications and mineral enrichment by demonstrating the versatility of this environmentally more benign approach compared to other common chemical starch modifications like crosslinking. Heat-moisture treatment (HMT) (15 % moisture, 100 °C) of native potato starch (NPS) affords granular products that gelatinise at lower temperatures, hold more water as gel, and are more susceptible to enzymatic digestion. Prior mineral enrichment of NPS with sodium, potassium, magnesium and calcium ions yielded significant changes in pasting curves, with monovalent cations increasing peak viscosity, while divalent cations decrease peak viscosity through ionic crosslinking of phosphate groups, allowing further fine tuning of swelling behaviour. Both short and long HMT (4 h and 16 h) triggered partial disruption of crystallinity and an increase in particle size without visible surface damage as evidenced by X-ray diffraction, laser diffraction and scanning electron microscopy. These novel products may find applications where a thickening agent is needed, and high levels of target minerals are desirable like sport nutrition. The viscosity behaviour, available energy and essential minerals may be beneficial to the formulation and nutritional value of energy gels, while adhering to clean-label requirements of today`s food industry.
The catalytic oxidation of potato starch by [MnIV2 (μ-O)3(tmtacn)2][H2O](CH3COO)2 (Mncat, with tmtacn =1,4,7-trimethyl-1,4,7-triazacyclononane) with H2O2, was recently introduced as a promising alternative to ubiquitous sodium hypochlorite (NaOCl). Here, we report an in-depth investigation into interactions of the catalyst with the starch granule. Pitted starches obtained by pre-treatment with high-frequency ultrasound (HFUS) were shown to result in a uniquely homogeneous oxidation. To study this further, fractionation of oxidised potato starch was done which showed a preference for the oxidation of smaller granules with a higher relative surface area. This result was corroborated by chemical surface gelatinisation of fractionated granules. These studies showed that the inside of the granules was oxidised, but that Mncat had a moderate preference for oxidation of the periphery. Together, these results allow for a better understanding of oxidation of starch by Mncat and how it differs from NaOCl oxidation making further optimisation of the process possible.