Numerous medical studies have shown the positive effects of forests on different aspects of human health. This study deals with the content of major terpenes in dominant coniferous species in Tara National Park, Serbia, in order to explore the potential for the development of a novel health tourism programme based on forest therapy. Main terpenes were analysed using a headspace-sam-pling technique coupled with gas-chromatography-mass spectrometry (Head-space-GC/MS). Nee-dles of fir and spruce growing in the vicinity of hiking trails were investigated for possibilities to perform such therapy. Major detected terpenes were α-cadinol and spathulenol previously de-scribed as antiviral, antitumor, antimicrobial and immunomodulatory agents. The results of the study were favourable and worked well with the existing walking infrastructure in the observed area of the Tara Mountain, as they act as invaluable resources for designing the structured forest bathing walks. The study not only adds to the knowledge in the environmental and public health realm but also to tourism and sustainability studies.
MULTIFILE
Pyrolysis liquids from lignocellulosic biomass have the potential to be used as a feed for aromatics such as benzene, toluene, and xylenes (BTX) using catalytic upgrading with zeolites. We here report an experimental study on the conversion of various pyrolysis oil fractions to determine the most suitable one for BTX synthesis. For this purpose, the pyrolysis liquid was fractionated using several extraction/distillation steps to give four fractions with different chemical compositions. The fractions were analyzed in detail using nuclear magnetic resonance spectroscopy, elemental analysis, gas chromatography-mass spectroscopy, thermogravimetric analysis, Karl-Fischer titration, and gel permeation chromatography. Catalytic pyrolysis experiments were carried out using a tandem microreactor with H-ZSM-5 (23) as the catalyst. The highest BTX yield of 24% (on a carbon and dry basis) was obtained using the fractions enriched in phenolics, whereas all others gave far lower yields (4.4-9%, on a carbon and dry basis). Correlations were established between the chemical composition of the feed fraction and the BTX yield. These findings support the concept of a pyrolysis biorefinery, where the pyrolysis liquid is separated into well-defined fractions before further dedicated catalytic conversions to biobased chemicals and biofuels using tailored catalysts.
Synthetic fibers, mainly polyethylene terephthalate (PET), polyamide (PA), polyacrylonitrile (PAN) and polypropylene (PP), are the most widely used polymers in the textile industry. These fibers surpass the production of natural fibers with a market share of 54.4%. The advantages of these fibers are their high modulus and strength, stiffness, stretch or elasticity, wrinkle and abrasion resistances, relatively low cost, convenient processing, tailorable performance and easy recycling. The downside to synthetic fibers use are reduced wearing comfort, build-up of electrostatic charge, the tendency to pill, difficulties in finishing, poor soil release properties and low dyeability. These disadvantages are largely associated with their hydrophobic nature. To render their surfaces hydrophilic, various physical, chemical and bulk modification methods are employed to mimic the advantageous properties of their natural counterparts. This review is focused on the application of recent methods for the modification of synthetic textiles using physical methods (corona discharge, plasma, laser, electron beam and neutron irradiations), chemical methods (ozone-gas treatment, supercritical carbon dioxide technique, vapor deposition, surface grafting, enzymatic modification, sol-gel technique, layer-by-layer deposition of nano-materials, micro-encapsulation method and treatment with different reagents) and bulk modification methods by blending polymers with different compounds in extrusion to absorb different colorants. Nowadays, the bulk and surface functionalization of synthetic fibers for various applications is considered as one of the best methods for modern textile finishing processes (Tomasino, 1992). This last stage of textile processing has employed new routes to demonstrate the great potential of nano-science and technology for this industry (Lewin, 2007). Combination of physical technologies and nano-science enhances the durability of textile materials against washing, ultraviolet radiation, friction, abrasion, tension and fading (Kirk–Othmer, 1998). European methods for application of new functional finishing materials must meet high ethical demands for environmental-friendly processing (Fourne, 1999). For this purpose the process of textile finishing is optimized by different researchers in new findings (Elices & Llorca, 2002). Application of inorganic and organic nano-particles have enhanced synthetic fibers attributes, such as softness, durability, breathability, water repellency, fire retardancy and antimicrobial properties (Franz, 2003; McIntyre, 2005; Xanthos, 2005). This review article gives an application overview of various physical and chemical methods of inorganic and organic structured material as potential modifying agents of textiles with emphasis on dyeability enhancements. The composition of synthetic fibers includes polypropylene (PP), polyethylene terephthalate (PET), polyamides (PA) or polyacrylonitrile (PAN). Synthetic fibers already hold a 54% market share in the fiber market. Of this market share, PET alone accounts for almost 50% of all fiber materials in 2008 (Gubitz & Cavaco-Paulo, 2008). Polypropylene, a major component for the nonwovens market accounts for 10% of the market share of both natural and synthetic fibers worldwide (INDA, 2008 and Aizenshtein, 2008). It is apparent that synthetic polymers have unique properties, such as high uniformity, mechanical strength and resistance to chemicals or abrasion. However, high hydrophobicity, the build-up of static charges, poor breathability, and resistant to finishing are undesirable properties of synthetic materials (Gubitz & Cavaco-Paulo, 2008). Synthetic textile fibers typically undergo a variety of pre-treatments before dyeing and printing is feasible. Compared to their cotton counterparts, fabrics made from synthetic fibers undergo mild scouring before dyeing. Nonetheless, these treatments still create undesirable process conditions wh
MULTIFILE