In our in-depth case study on two circular business models we found important roles for material scouts and networks. These key partners are essential for establishing circular business models and circular flow of materials. Besides, we diagnose that companies are having difficulties to develop viable value propositions and circular strategies. The paper was presented at NBM Nijmegen 2020 and will be published at a later date
DOCUMENT
This article investigates the phenomenon of rebound effects in relation to a transition to a Circular Economy (CE) through qualitative inquiry. The aim is to gain insights in manifestations of rebound effects by studying the Dutch textile industry as it transitions to a circular system, and to develop appropriate mitigation strategies that can be applied to ensure an effective transition. The rebound effect, known originally from the energy efficiency literature, occurs when improvements in efficiency or other technological innovations fail to deliver on their environmental promise due to (behavioral) economic mechanisms. The presence of rebound in CE contexts can therefore lead to the structural overstatement of environmental benefits of certain innovations, which can influence reaching emission targets and the preference order of recycling. In this research, the CE rebound effect is investigated in the Dutch textile industry, which is identified as being vulnerable to rebound, yet with a positive potential to avoid it. The main findings include the very low awareness of this effect amongst key stakeholders, and the identification of specific and general instances of rebound effects in the investigated industry. In addition, the relation of these effects to Circular Business Models and CE strategies are investigated, and placed in a larger context in order to gain a more comprehensive understanding about the place and role of this effect in the transition. This concerns the necessity for a new approach to how design has been practiced traditionally, and the need to place transitional developments in a systems perspective. Propositions that serve as theory-building blocks are put forward and include suggestions for further research and recommendations about dealing with rebound effects and shaping an eco-effective transition. Thomas Siderius, Kim Poldner, Reconsidering the Circular Economy Rebound effect: Propositions from a case study of the Dutch Circular Textile Valley, Journal of Cleaner Production, Volume 293, 2021, 125996, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2021.125996.
DOCUMENT
A rise in global population and welfare is depleting the earth’s resources and challenging the current predominantly linear economy, following a take-make-waste pattern, calling upon a shift towards a more circular economy (Bastein and Willems, 2019; Ellen MacArthur Foundation, 2013; Lüdeke-Freund et al., 2019). The Dutch government and the European Union have set the goal/ambition to become fully circular by 2050 thus striving towards a cleaner economy and reducing the dependency on scarce resources (European Commission, 2020; Government of Netherlands, 2016).
MULTIFILE
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.
The increasing amount of electronic waste (e-waste) urgently requires the use of innovative solutions within the circular economy models in this industry. Sorting of e-waste in a proper manner are essential for the recovery of valuable materials and minimizing environmental problems. The conventional e-waste sorting models are time-consuming processes, which involve laborious manual classification of complex and diverse electronic components. Moreover, the sector is lacking in skilled labor, thus making automation in sorting procedures is an urgent necessity. The project “AdapSort: Adaptive AI for Sorting E-Waste” aims to develop an adaptable AI-based system for optimal and efficient e-waste sorting. The project combines deep learning object detection algorithms with open-world vision-language models to enable adaptive AI models that incorporate operator feedback as part of a continuous learning process. The project initiates with problem analysis, including use case definition, requirement specification, and collection of labeled image data. AI models will be trained and deployed on edge devices for real-time sorting and scalability. Then, the feasibility of developing adaptive AI models that capture the state-of-the-art open-world vision-language models will be investigated. The human-in-the-loop learning is an important feature of this phase, wherein the user is enabled to provide ongoing feedback about how to refine the model further. An interface will be constructed to enable human intervention to facilitate real-time improvement of classification accuracy and sorting of different items. Finally, the project will deliver a proof of concept for the AI-based sorter, validated through selected use cases in collaboration with industrial partners. By integrating AI with human feedback, this project aims to facilitate e-waste management and serve as a foundation for larger projects.
Verschillende maatschappelijke veranderingen dwingen de bouwbranche tot innovaties. Ondanks de potentie op het vlak van circulariteit en duurzaamheid van 3D-printen met kunststoffen kent deze technologie nog nauwelijks toepassingen in de bouw. Redenen hiervoor zijn achterblijvende materiaaleigenschappen en het verschil in cultuur tussen de bouwwereld en kunststofverwerkende industrie. Het bedrijf Phidias, richt zich op innovatieve en creatieve vastgoedconcepten. Samen met Zuyd Hogeschool (Zuyd) willen zij onderzoek doen naar het printen van bouwelementen waarbij de meerwaarde van 3D-printen wordt gezien in het combineren van materiaaleigenschappen. Zuyd heeft afgelopen jaren veel onderzoek gedaan naar het ontwikkelen van materialen voor 3D-printen (o.a. 2014-01-96 PRO). De volgende fase is de opgedane kennis toe te passen voor specifieke applicaties, in dit geval om de vraag van het MKB bedrijf Phidias te beantwoorden. Vanuit een ander MKB-bedrijf, MaukCC, ontwikkelaar van 3D printers, komt de vraag om de afstemming tussen materialen en hardware te optimaliseren. De combinatie van beide vragen uit het werkveld en de expertise bij Zuyd heeft geleid tot dit projectvoorstel. In deze pilotstudie ligt de focus voornamelijk op het 3D printen van één specifiek bouwkundig element met meerdere eigenschappen (bouwfysisch en constructief). De combinatie van eigenschappen wordt verkregen door gebruik te maken van twee (biobased) kunststoffen waarbij tevens een variatie wordt aangebracht in de geprinte structuren. Op deze manier kunnen grondstoffen worden gespaard. Het onderzoek sluit aan bij twee zwaartepunten van Zuyd, namelijk “Transitie naar een duurzaam gebouwde omgeving” en “Life science & materials”. De interdisciplinaire aanpak, op het grensvlak van de lectoraten “Material Sciences” (Gino van Strydonck) en “Sustainable Energy in the Built Environment” (Zeger Vroon) staat garant voor innovatief onderzoek. Integratie van onderwijs en onderzoek vindt plaats door studenten samen met een coach (docent) en ervaren professional aan dit onderzoek te laten werken in Communities for Development (CfD’s).