Closing the loop of products and materials in Product Service Systems (PSS) can be approached by designers in several ways. One promising strategy is to invoke a greater sense of ownership of the products and materials that are used within a PSS. To develop and evaluate a design tool in the context of PSS, our case study focused on a bicycle sharing service. The central question was whether and how designers can be supported with a design tool, based on psychological ownership, to involve users in closing the loop activities. We developed a PSS design tool based on psychological ownership literature and implemented it in a range of design iterations. This resulted in ten design proposals and two implemented design interventions. To evaluate the design tool, 42 project members were interviewed about their design process. The design interventions were evaluated through site visits, an interview with the bicycle repairer responsible, and nine users of the bicycle service. We conclude that a psychological ownership-based design tool shows potential to contribute to closing the resource loop by allowing end users and service provider of PSS to collaborate on repair and maintenance activities. Our evaluation resulted in suggestions for revising the psychological ownership design tool, including adding ‘Giving Feedback’ to the list of affordances, prioritizing ‘Enabling’ and ‘Simplification’ over others and recognize a reciprocal relationship between service provider and service user when closing the loop activities.
DOCUMENT
Since the arrival of cinema, film theorists have studied how spectators perceive the representations that the medium offers to our senses. Early film theorists have bent their heads over what cinema is, how cinema can be seen as art, but also over what cinema is capable of. One of the earliest film theorists, Hugo Münsterberg argued in 1916 that the uniqueness of cinema, or as he calls it photoplay, lies in the way it offers the possibility to represent our mental perception and organisation of the reality, or the world we live in: “the photoplay tells us the human story by overcoming the forms of the outer world, namely, space, time, and causality, and by adjusting the events to the forms of the inner world, namely, attention, memory, imagination, and emotion” (Münsterberg [1916] 2004, 402)
LINK
Nature-based coastal management is mainstream in the Netherlands. About 12 Mm3 of sand is added annually to the coast to compensate coastal erosion and maintain high safety levels against flooding. This amount will likely increase to compensate for accelerated sea level rise. (Mega-)Nourishments may also strengthen and support biodiversity and recreational values of the coastal zone and associated wetland areas. However, the ecological and societal impacts of mega-nourishments on open coasts are not well established, hampering comparison of pros and cons of different nourishment strategies. This knowledge gap is largely due to the lack of suitable methods to monitor and predict the spreading of nourishment sand along the coast and into tidal basins. Ameland Inlet provides us with a unique opportunity to develop and test novel approaches to fill this knowledge gap in close collaboration with our consortium and stakeholders. In 2018 the first tidal inlet mega-nourishment (5 Mm3) was placed in the Ameland Inlet ebb-tidal delta, and geomorphic and biotic responses nearby are closely monitored in the Kustgenese 2.0 and SEAWAD programmes. Our research builds on the insights gained, will gather new data to investigate off-site effects (linked with SIBES/SIBUS sampling), and build a common knowledge-base with stakeholders. We will develop novel luminescence-based methods to monitor the temporal and spatial dispersal of nourishment sand. These insights will be combined with an inventory of off-site biotic responses to nourishment and the role biota play in the mixing of nourishment sand with natural sediments. Combined results will be used to develop and validate models to trace transport paths of individual grains and improve morphodynamic predictions. Throughout the project, we will collaborate and interact intensely with coastal managers and (local) stakeholders to address concerns and exchange insights, creating a platform for co-assessment and optimization of nourishment designs and strategies.