Channel State Information (CSI) analysis for Predictive Maintenance using Convolutiona Neural Network (CNN).
MULTIFILE
Accurate localization in autonomous robots enables effective decision-making within their operating environment. Various methods have been developed to address this challenge, encompassing traditional techniques, fiducial marker utilization, and machine learning approaches. This work proposes a deep-learning solution employing Convolutional Neural Networks (CNN) to tackle the localization problem, specifically in the context of the RobotAtFactory 4.0 competition. The proposed approach leverages transfer learning from the pre-trained VGG16 model to capitalize on its existing knowledge. To validate the effectiveness of the approach, a simulated scenario was employed. The experimental results demonstrated an error within the millimeter scale and rapid response times in milliseconds. Notably, the presented approach offers several advantages, including a consistent model size regardless of the number of training images utilized and the elimination of the need to know the absolute positions of the fiducial markers.
DOCUMENT
In recent years, drones have increasingly supported First Responders (FRs) in monitoring incidents and providing additional information. However, analysing drone footage is time-intensive and cognitively demanding. In this research, we investigate the use of AI models for the detection of humans in drone footage to aid FRs in tasks such as locating victims. Detecting small-scale objects, particularly humans from high altitudes, poses a challenge for AI systems. We present first steps of introducing and evaluating a series of YOLOv8 Convolutional Neural Networks (CNNs) for human detection from drone images. The models are fine-tuned on a created drone image dataset of the Dutch Fire Services and were able to achieve a 53.1% F1-Score, identifying 439 out of 825 humans in the test dataset. These preliminary findings, validated by an incident commander, highlight the promising utility of these models. Ongoing efforts aim to further refine the models and explore additional technologies.
MULTIFILE