In order to gain a more mature share in the future energy supply, green gas supply chains face some interesting challenges. In this thesis green gas supply chains, based on codigestion of cow manure and maize, are considered. The produced biogas is upgraded to natural gas quality and injected into the existing distribution gas grid and thus replacing natural gas. Literature research showed that relatively much attention has been paid up to now to elements of such supply chains. Research into digestion technology, agricultural aspects of (energy) crops and logistics of biomass are examples of this. This knowledge is indispensable, but how this knowledge should be combined to help understand how future green gas systems may look like, remains a white spot in the current knowledge. This thesis is an effort to fill this gap. A practical but sound way of modeling green gassupply chains was developed, taking costs and sustainability criteria into account. The way such supply chains can deal with season dependent gas demand was also investigated. This research was further expanded into a geographical model to simulate several degrees of natural gas replacement by green gas. Finally, ways to optimize green gas supply chains in terms of energy efficiency and greenhouse gas reduction were explored.
DOCUMENT
Dit project is een eerste analyse naar de haalbaarheid en doelmatigheid van gras vergisting naar biogas.
MULTIFILE
Biogas can be seen as a flexible and storable energy carrier, capable of absorbing intermittent energy production and demand. However, the sustainability and efficiency of biogas production as a flexible energy provider is not fully understood. This research will focus on simulating biogas production within decentralised energy systems. Within these system several factors need to be taken into account, including, biomass availability, energy demand, energy production from other decentralised energy sources and factors influencing the biogas production process. The main goal of this PhD. research is to design and develop a method capable of integrating biomass availability, energy demand, biogas production, in a realistic dynamic geographical model, such that conclusions can be drawn on mainly the sustainability, and additionally on the efficiency, flexibility and economy of biogas production in the near and far future (2012 to 2050), within local decentralised smart energy grids. Furthermore. This research can help determining the best use of biogas in the near and far future.
DOCUMENT