Athlete development depends on many factors that need to be balanced by the coach. The amount of data collected grows with the development of sensor technology. To make data-informed decisions for training prescription of their athletes, coaches could be supported by feedback through a coach dashboard. The aim of this paper is to describe the design of a coach dashboard based on scientific knowledge, user requirements, and (sensor) data to support decision making of coaches for athlete development in cyclic sports. The design process involved collaboration with coaches, embedded scientists, researchers, and IT professionals. A classic design thinking process was used to structure the research activities in five phases: empathise, define, ideate, prototype, and test phases. To understand the user requirements of coaches, a survey (n = 38), interviews (n = 8) and focus-group sessions (n = 4) were held. Design principles were adopted into mock-ups, prototypes, and the final coach dashboard. Designing a coach dashboard using the co-operative research design helped to gain deep insights into the specific user requirements of coaches in their daily training practice. Integrating these requirements, scientific knowledge, and functionalities in the final coach dashboard allows the coach to make data-informed decisions on training prescription and optimise athlete development.
DOCUMENT
Among runners, there is a high drop-out rate due to injuries and loss of motivation. These runners often lack personalized guidance and support. While there is much potential for sports apps to act as (e-)coaches to help these runners to avoid injuries, set goals, and maintain good intentions, most available running apps primarily focus on persuasive design features like monitoring, they offer few or no features that support personalized guidance (e.g., personalized training schemes). Therefore, we give a detailed description of the working mechanism of Inspirun e-Coach app and on how this app uses a personalized coaching approach with automatic adaptation of training schemes based on biofeedback and GPS-data. We also share insights into how end-users experience this working mechanism. The primary conclusion of this study is that the working mechanism (if provided with accurate data) automatically adapts training sessions to the runners’ physical workload and stimulates runners’ goal perception, motivation, and experienced personalization. With this mechanism, we attempted to make optimal use of the potential of wearable technology to support the large group of novice or less experienced runners and that by providing insight in our working mechanisms, it can be applied in other technologies, wearables, and types of sports.
DOCUMENT
Athlete development depends on many factors that need to be balanced by the coach. The amount of data collected grows with the development of sensor technology. To make data-informed decisions for training prescription of their athletes, coaches could be supported by feedback through a coach dashboard. The aim of this paper is to describe the design of a coach dashboard based on scientific knowledge, user requirements, and (sensor) data to support decision making of coaches for athlete development in cyclic sports. The design process involved collaboration with coaches, embedded scientists, researchers, and IT professionals. A classic design thinking process was used to structure the research activities in five phases: empathise, define, ideate, prototype, and test phases. To understand the user requirements of coaches, a survey (n = 38), interviews (n = 8) and focus-group sessions (n = 4) were held. Design principles were adopted into mock-ups, prototypes, and the final coach dashboard. Designing a coach dashboard using the co-operative research design helped to gain deep insights into the specific user requirements of coaches in their daily training practice. Integrating these requirements, scientific knowledge, and functionalities in the final coach dashboard allows the coach to make data-informed decisions on training prescription and optimise athlete development.
DOCUMENT
In het RAAK-project, genaamd Groningen MAPS, is er veel data en kennis vergaard van waaruit antwoorden zijn geformuleerd op verschillende vragen rondom belasting en belastbaarheid van (top)sporters. Het onderzoek naar de factoren die invloed hebben op de prestaties en het blessurerisico van sporters heeft opgeleverd dat we nu meer inzicht hebben in de informatie die nodig is om gericht te zoeken naar verbanden tussen belasting en belastbaarheid. We hebben echter nog niet gekeken naar de data vanuit een datamining perspectief. Datamining is het gericht zoeken naar verbanden in een database met als doel het opstellen van profielen. Deze profielen kunnen nieuwe inzichten geven waardoor sporters van nog betere feedback voorzien kunnen worden. Het doel van het Top-up project is om kennis te ontwikkelen over het automatiseren van de verwerking en analyse van datastromen. Dit zal leiden tot een datasysteem wat automatisch analyses uitvoert achter de schermen. Met dit datasysteem kan de Groningen MAPS-data verder geanalyseerd worden (door middel van datamining) om nieuw inzicht te verkrijgen op het gebied van patronen in belasting en belastbaarheid van (top)sporters.
Mensen die tijdelijk of blijvend niet in staat zijn om zorg te dragen voor hun financiën kunnen onder bewind geplaatst worden. Bewindvoerders zijn professionals die als wettelijke taak hebben om de financiële belangen van de onderbewindgestelde te beschermen en om de financiële zelfredzaamheid van onderbewindgestelden te bevorderen. Bewindvoerders(organisaties) geven aan dat hun cliëntengroep de laatste jaren is veranderd: het aandeel mensen met een licht verstandelijke beperking (lvb) is gegroeid. In hun dagelijkse praktijk lopen bewindvoerders tegen een aantal problemen aan waarbij wij hen middels dit project willen ondersteunen. De doelstelling van het project is om bewindvoerders te ondersteunen bij: 1) Het herkennen en signaleren van mensen met een lvb. 2) Het onderscheiden van verschillende niveaus van zelfredzaamheid bij mensen met een lvb. 3) Het verbeteren van de hulp- en dienstverlening aan mensen met een lvb, gericht op: o communicatie met mensen met een lvb o coaching van de financiële vaardigheden bij mensen met een lvb. Het project resulteert in de oplevering van 5 producten, die bewindvoerders concrete tools in handen geven om mensen met een lvb met schulden in een vroeg stadium te herkennen en hun de juiste ondersteuning te bieden. In werksessies gaan we de producten concretiseren met bewindvoerders, maar gedacht kan worden aan trainingsmodules, filmpjes, handreikingen. De producten richten zich op: • Product 1: Herkenning • Product 2: Mate van financiële zelfredzaamheid bij mensen met LVB • Product 3: Communicatie met mensen met een LVB • Product 4: Hulp- en dienstverlening aan mensen met een LVB • Product 5: financiële screener De producten gaan we ontwikkelen en evalueren door middel van, o.a.: interviews, vragenlijsten, observaties. Naast bewindvoerders en lvb-experts worden ook mensen met een lvb bij het onderzoek betrokken.
Nederland kent ongeveer 220.000 bedrijfsongevallen per jaar (met 60 mensen die overlijden). Vandaar dat elke werkgever verplicht is om bedrijfshulpverlening (BHV) te organiseren, waaronder BHV-trainingen. Desondanks brengt slechts een-derde van alle bedrijven de arbeidsrisico’s in kaart via een Risico-Inventarisatie & Evaluatie (RI&E) en blijft het aandeel werknemers met een arbeidsongeval hoog. Daarom wordt er continu geïnnoveerd om BHV-trainingen te optimaliseren, o.a. door middel van Virtual Reality (VR). VR is niet nieuw, maar is wel doorontwikkeld en betaalbaarder geworden. VR biedt de mogelijkheid om veilige realistische BHV-noodsimulaties te ontwikkelen waarbij de cursist het gevoel heeft daar echt te zijn. Ondanks de toename in VR-BHV-trainingen, is er weinig onderzoek gedaan naar het effect van VR in BHV-trainingen en zijn resultaten tegenstrijdig. Daarnaast zijn er nieuwe technologische ontwikkelingen die het mogelijk maken om kijkgedrag te meten in VR m.b.v. Eye-Tracking. Tijdens een BHV-training kan met Eye-Tracking gemeten worden hoe een instructie wordt opgevolgd, of cursisten worden afgeleid en belangrijke elementen (gevaar en oplossingen) waarnemen tijdens de simulatie. Echter, een BHV-training met VR en Eye-Tracking (interacties) bestaat niet. In dit project wordt een prototype ontwikkeld waarin Eye-Tracking wordt verwerkt in een 2021 ontwikkelde VR-BHV-training, waarin noodsituaties zoals een kantoorbrand worden gesimuleerd (de BHVR-toepassing). Door middel van een experiment zal het prototype getest worden om zo voor een deel de vraag te beantwoorden in hoeverre en op welke manier Eye-Tracking in VR een meerwaarde biedt voor (RI&E) BHV-trainingen. Dit project sluit daarmee aan op het missie-gedreven innovatiebeleid ‘De Veiligheidsprofessional’ en helpt het MKB dat vaak middelen en kennis ontbreekt voor onderzoek naar effectiviteit rondom innovatieve-technologieën in educatie/training. Het project levert onder meer een prototype op, een productie-rapport en onderzoeks-artikel, en staat open voor nieuwe deelnemers bij het schrijven van een grotere aanvraag rondom de toepassing en effect van VR en Eye-Tracking in BHV-trainingen.