Purpose – Information verification is an important factor in commercial valuation practice.Valuers use their professional autonomy to decide on the level of verification required, thereby creating an opportunity for client-related judgement bias in valuation. The purpose of this paper is to assess the manifestation of client attachment risks in information verification. Design/methodology/approach – A case-based questionnaire was used to retrieve data from 290 commercial valuation professionals in the Netherlands, providing a 15 per cent response rate of the Dutch commercial valuation population. Descriptive and inferential statistics have been used to test research hypotheses involving relations between information verification and professional features that may indicate client attachment such as an executive job level and brokerage experience. Findings – The results reveal that valuers acting at partner level within their organisation obtain lower scores on information verification compared to lower-ranked valuers. Also, brokerage experience correlates negatively to information verification of valuation professionals. Both findings have statistical significance. Research limitations/implications – The results reflect valuers’ reasoning behaviour rather than actual behaviour. Replication of findings through experimental design will contribute to research validity. Practical implications – Maintaining close client contact in a competitive environment is important for business continuity yet may foster client attachment.The associated downside risks in valuation practice call for higher awareness of (subconscious) client influence and the development of attitudinal scepticism in valuer training programmes. Originality/value – This paper is one of the few that explore possible sources of valuer judgement bias by relating client-friendly valuer features to a key area of valuation i.e. information verification.
LINK
This research explores commercial friendship within Dutch pubs, focusing on the transition from transactional to personal interactions between bartenders and guests. The study uses semi-structured interviews and thematic analysis to reveal that commercial friendship shares many similarities with non-commercial friendship but differs in important aspects. We found six levels of commercial friendship that range from minimal interactions, categorized as 'guest,' to deep, personal connections identified as 'best friend.' We identified three dimensions of commercial friendship quality: activities, self-disclosure, and social support. A critical finding is the 'tipping point'—a stage in the relationship development where interactions shift from professional to personal, characterized by mutual personal disclosure and balanced social support, redefining professional relationships. These findings demonstrate that commercial environments can foster genuine friendships, and provide valuable insights for enhancing interpersonal relationships within the hospitality industry.
LINK
The increasing demand for Prunus africana resources is an opportunity for its conservation and commercial use to support livelihoods in Africa. The objective for this study was to investigate major steps to advance production of P. africana for long-term commercial use in Uganda. Specific objectives were to explore potential production schemes, setbacks in production and strategies to advance it. The study was done by review of literature, documents and interviews with experts. Results indicated Agroforestry and large plantations to be useful schemes for production. Identified setbacks are: low trade in P. africana, unknown returns from production, competing land uses, long growth period, limited market assurance and information. The lack of a resource assessment for P. africana in forests contributes to its low trade which undermines related economic benefits for national development and incentives to commercial production. We propose that a national Quantitative resource assessment of P. africana in forests is one of the crucial steps that should be undertaken to carefully organise and advance sustainable trade to provide rational incentives for commercial production. Subsequently, production should be localised in suitable sites and producers be organised into cooperatives. Further research to improve returns from commercial production of P. africana is needed.
MULTIFILE
In this proposal, a consortium of knowledge institutes (wo, hbo) and industry aims to carry out the chemical re/upcycling of polyamides and polyurethanes by means of an ammonolysis, a depolymerisation reaction using ammonia (NH3). The products obtained are then purified from impurities and by-products, and in the case of polyurethanes, the amines obtained are reused for resynthesis of the polymer. In the depolymerisation of polyamides, the purified amides are converted to the corresponding amines by (in situ) hydrogenation or a Hofmann rearrangement, thereby forming new sources of amine. Alternatively, the amides are hydrolysed toward the corresponding carboxylic acids and reused in the repolymerisation towards polyamides. The above cycles are particularly suitable for end-of-life plastic streams from sorting installations that are not suitable for mechanical/chemical recycling. Any loss of material is compensated for by synthesis of amines from (mixtures of) end-of-life plastics and biomass (organic waste streams) and from end-of-life polyesters (ammonolysis). The ammonia required for depolymerisation can be synthesised from green hydrogen (Haber-Bosch process).By closing carbon cycles (high carbon efficiency) and supplementing the amines needed for the chain from biomass and end-of-life plastics, a significant CO2 saving is achieved as well as reduction in material input and waste. The research will focus on a number of specific industrially relevant cases/chains and will result in economically, ecologically (including safety) and socially acceptable routes for recycling polyamides and polyurethanes. Commercialisation of the results obtained are foreseen by the companies involved (a.o. Teijin and Covestro). Furthermore, as our project will result in a wide variety of new and drop-in (di)amines from sustainable sources, it will increase the attractiveness to use these sustainable monomers for currently prepared and new polyamides and polyurethanes. Also other market applications (pharma, fine chemicals, coatings, electronics, etc.) are foreseen for the sustainable amines synthesized within our proposition.
Electrohydrodynamic Atomization (EHDA), also known as Electrospray (ES), is a technology which uses strong electric fields to manipulate liquid atomization. Among many other areas, electrospray is currently used as an important tool for biomedical applications (droplet encapsulation), water technology (thermal desalination and metal recovery) and material sciences (nanofibers and nano spheres fabrication, metal recovery, selective membranes and batteries). A complete review about the particularities of this technology and its applications was recently published in a special edition of the Journal of Aerosol Sciences [1]. Even though EHDA is already applied in many different industrial processes, there are not many controlling tools commercially available which can be used to remotely operate the system as well as identify some spray characteristics, e.g. droplet size, operational mode, droplet production ratio. The AECTion project proposes the development of an innovative controlling system based on the electrospray current, signal processing & control and artificial intelligence to build a non-visual tool to control and characterize EHDA processes.
Drones have been verified as the camera of 2024 due to the enormous exponential growth in terms of the relevant technologies and applications such as smart agriculture, transportation, inspection, logistics, surveillance and interaction. Therefore, the commercial solutions to deploy drones in different working places have become a crucial demand for companies. Warehouses are one of the most promising industrial domains to utilize drones to automate different operations such as inventory scanning, goods transportation to the delivery lines, area monitoring on demand and so on. On the other hands, deploying drones (or even mobile robots) in such challenging environment needs to enable accurate state estimation in terms of position and orientation to allow autonomous navigation. This is because GPS signals are not available in warehouses due to the obstruction by the closed-sky areas and the signal deflection by structures. Vision-based positioning systems are the most promising techniques to achieve reliable position estimation in indoor environments. This is because of using low-cost sensors (cameras), the utilization of dense environmental features and the possibilities to operate in indoor/outdoor areas. Therefore, this proposal aims to address a crucial question for industrial applications with our industrial partners to explore limitations and develop solutions towards robust state estimation of drones in challenging environments such as warehouses and greenhouses. The results of this project will be used as the baseline to develop other navigation technologies towards full autonomous deployment of drones such as mapping, localization, docking and maneuvering to safely deploy drones in GPS-denied areas.