Electrification of mobility exceeds personal transport to increasingly focus on particular segments such as city logistics and taxis. These commercial mobility segments have different motives to purchase a full electric vehicle and require a particular approach to incentivize and facilitate the transition towards electric mobility. A case where a municipality was successful in stimulating the transition to electric mobility is the taxi sector in the city of Amsterdam. Using results from a survey study (n = 300), this paper analyses the differences in characteristics between taxi drivers that either have or do not have interest in purchasing a full electric taxi vehicle. Results show a low intention across the sample to adopt a full electric vehicle and no statistically significant differences in demographics between the two groups. Differences were found between the level of acceptability of the covenant, the rated attractiveness of the incentives, the ratings of full electric vehicle attributes and the consultation of objective and social information sources. These results can be used by policy makers to develop new incentives that target specific topics currently influencing the interest in a full electric taxi vehicle.
DOCUMENT
Innovative logistics service providers are currently looking for possibilities to introduce electric vehicles for goods distribution. As electrical vehicles still suffer from a limited operation range, the logistical process faces important challenges. In this research we advise on the composition of the electrical vehicle fleet and on the configuration of the service network, to achieve a successful implementation of electric vehicles in the innercity of Amsterdam. Additional question in our research is whether the CO2 emission reduces at all or might even increase due to an increase of tripkilometres as a consequence of mileage constraints by the batteries. The aim of the implementation of the research is to determine the ideal fleet to transport a known demand of cargo, located at a central depot, to a known set of recipients using vehicles of varying types. The problem can be classified as a Fleet Size and Mix Vehicle Routing Problem (FSMVRP). In addition to the regular constraints that apply to the regular FSMVRP, in our case also time windows apply to the cargo that needs to be transported (FSMVRPTW). The operation range of the vehicles is constrained by the battery capacity. We suggest modifications to existing formulations of the FSMVRPTW to make it suitable for the application on cases with electrical vehicles. We apply the model to create an optimal fleet configuration and the service routes. In our research case of the Cargohopper in Amsterdam, the performance of alternative fleet compositions is determined for a variety of scenarios, to assess their robustness. The main uncertainties addressed in the scenarios are the cargo composition, the operation range of the vehicles and their operation speed. Based on our research findings in Amsterdam we conclude that the current generation of electric vehicles as a part of urban consolidation concept have the ability to perform urban freight transport efficiently (19% reduction in vehicle kilometres) and meanwhile have the capability to improve air quality and reduce CO2-emissions by 90%, and reduce noise nuisance in the inner cities of our (future) towns.
LINK
Recently KLM has revealed the plan to downsize the full-freight cargo fleet in Schiphol Airport, for that reason it is important for the company and the airport to explore the consequences of moving the cargo transported by the full freighters into the bellies of the passenger flights. The consequences of this action in terms of capacity and requirements are still unknown for the stakeholders. The current study illustrates that once the freighters are phased out, the commercial traffic needs to adjust mainly their load factors in order to absorb the cargo that was previously transported by the full freighters. The current model is a version that includes the airside operation of the airport and also the vehicle movement which allows addressing the uncertainties of the operation as well as the limitations and potential problems of the phasing-out action.
DOCUMENT
This article delves into the acceptance of autonomous driving within society and its implications for the automotive insurance sector. The research encompasses two different studies conducted with meticulous analysis. The first study involves over 600 participants involved with the automotive industry who have not yet had the opportunity to experience autonomous driving technology. It primarily centers on the adaptation of insurance products to align with the imminent implementation of this technology. The second study is directed at individuals who have had the opportunity to test an autonomous driving platform first-hand. Specifically, it examines users’ experiences after conducting test drives on public roads using an autonomous research platform jointly developed by MAPFRE, Universidad Carlos III de Madrid, and Universidad Politécnica de Madrid. The study conducted demonstrates that the user acceptance of autonomous driving technology significantly increases after firsthand experience with a real autonomous car. This finding underscores the importance of bringing autonomous driving technology closer to end-users in order to improve societal perception. Furthermore, the results provide valuable insights for industry stakeholders seeking to navigate the market as autonomous driving technology slowly becomes an integral part of commercial vehicles. The findings reveal that a substantial majority (96% of the surveyed individuals) believe that autonomous vehicles will still require insurance. Additionally, 90% of respondents express the opinion that policies for autonomous vehicles should be as affordable or even cheaper than those for traditional vehicles. This suggests that people may not be fully aware of the significant costs associated with the systems enabling autonomous driving when considering their insurance needs, which puts the spotlight back on the importance of bringing this technology closer to the general public.
DOCUMENT
The Maritime Spatial Planning (MSP) Challenge simulation platform helps planners and stakeholders understand and manage the complexity of MSP. In the interactive simulation, different data layers covering an entire sea region can be viewed to make an assessment of the current status. Users can create scenarios for future uses of the marine space over a period of several decades. Changes in energy infrastructure, shipping, and the marine environment are then simulated, and the effects are visualized using indicators and heat maps. The platform is built with advanced game technology and uses aspects of role-play to create interactive sessions; it can thus be referred to as serious gaming. To calculate and visualize the effects of planning decisions on the marine ecology, we integrated the Ecopath with Ecosim (EwE) food web modeling approach into the platform. We demonstrate how EwE was connected to MSP, considering the range of constraints imposed by running scientific software in interactive serious gaming sessions while still providing cascading ecological feedback in response to planning actions. We explored the connection by adapting two published ecological models for use in MSP sessions. We conclude with lessons learned and identify future developments of the simulation platform.
MULTIFILE
Sustainable commercial fishing, species conservation, and bycatch are contentious topics. Great emphasis has been placed on the sustainable sourcing of particular species that we buy at the store and order in restaurants, but how can we trust that the fish on our plates, from a system-wide perspective, have been appropriately sourced? Even in what are commonly considered to be the best-managed fisheries in the world (i.e., Alaskan fisheries), thousands of tons of fish are wasted each year in the interest of providing certain species in certain ways to certain people, at certain prices. Are the management practices and regulations that we think are helping actually having the desired outcomes in terms of the effective use of natural resources?This book presents a framework that can enhance our understanding, research, and regulation of frontline organizing processes in commercial fisheries, which may be generalized to other resource extraction industries. It enables readers to better grasp and respond to the need to develop practices and regulations that involve effective use of all natural resources, rather than just a chosen few. The book is especially important to researchers and practitioners active in the fishing industry, and natural resource managers and regulators interested in understanding and improving their management systems. It is also highly relevant to organization and management researchers interested in coupled human and natural systems, ecological sensemaking, the role of quantum mechanics in organizational phenomena, sociomateriality, and sustainability.The book uses the real-world case of an Alaskan fishing fleet to explore how the commercial fishing industry (which includes businesses, management agencies, regulatory bodies, and markets, among others) entangles itself with natural phenomena in order to extract resources from them. After gaining a better understanding of these processes can we see how they can be improved, especially through changes to regulatory management systems, in order to foster not only more sustainable, but also less wasteful (these two goals are not necessarily interdependent in today's regulatory management systems), natural resource extraction and use. Such an understanding requires exploring how regulations, natural phenomena, human sensemaking processes, and market forces entangle at sea to materialize the fish that make their way to our plates - as well as those that, importantly, do not.
LINK
This report summarizes the work done by Thematic Working Group 4 (TWG4) on “Procurement and Tendering” for e-bus deployment. It further analyses the various Good Practices collected by project partners with a reference to the above aspects. This report takes the policy learning one step further and sheds light on regional similarities and differences in practices that have been found functional and worth spreading.
DOCUMENT
Despite increased interest in applying psychological theory to the practice of designing behavioral change interventions, design professionals often lack adequate knowledge and resources to do so. In this paper, we present a tool to help professionals in the creative industries design evidence-based health interventions, the Persuasive by Design model. This paper describes the contents and application of the model as well as plans for further development and testing.
MULTIFILE
We present a novel architecture for an AI system that allows a priori knowledge to combine with deep learning. In traditional neural networks, all available data is pooled at the input layer. Our alternative neural network is constructed so that partial representations (invariants) are learned in the intermediate layers, which can then be combined with a priori knowledge or with other predictive analyses of the same data. This leads to smaller training datasets due to more efficient learning. In addition, because this architecture allows inclusion of a priori knowledge and interpretable predictive models, the interpretability of the entire system increases while the data can still be used in a black box neural network. Our system makes use of networks of neurons rather than single neurons to enable the representation of approximations (invariants) of the output.
LINK
Residential public charging points are shared by multiple electric vehicle drivers, often neighbours. Therefore, charging behaviour is embedded in a social context. Behaviours that affect, or are influenced by, other publiccharging point users have been sparsely studied and lack an overarching and comprehensive definition. Consequently, very few measures are applied in practice to influence charging behaviour. We aim to classify and define the social dimension of charging behaviour from a social-psychological perspective and, using a behaviour change framework, identify and analyse the measures to influence this behaviour. We interviewed 15 experts onresidential public charging infrastructure in the Netherlands. We identified 17 charging behaviours rooted in interpersonal interactions between individuals and interactions between individuals and technology. These behaviours can be categorised into prosocial and antisocial charging behaviours. Prosocial charging behaviour provides or enhances the opportunity for other users to charge their vehicle at the public charging point, for instance by charging only when necessary. Antisocial charging behaviour prevents or diminishes this opportunity, for instance by occupying the charging point after charging, intentionally or unintentionally. We thenidentified 23 measures to influence antisocial and prosocial charging behaviours. These measures can influence behaviour through human–technology interaction, such as providing charging etiquettes to new electric vehicle drivers or charging idle fees, and interpersonal interaction, such as social pressure from other charging point users or facilitating social interactions to exchange requests. Our approach advocates for more attention to the social dimension of charging behaviour.
DOCUMENT