In 2014, the Dutch government agreed with the food sector to lower salt, sugar, saturated fat and energy in foods. To reformulate, an integrated approach of four disciplines (Nutrition & Health, Food Technology, Legislation, and Consumer Perspectives) is important for food companies (Framework for Reformulation). The objective of this study was to determine whether this framework accurately reflects reformulation processes in food companies. Seventeen Dutch food companies in the bakery, meat and convenience sector were interviewed with a semi-structured topic list. Interviews were transcribed, coded and analysed. Interviews illustrated that there were opportunities to lower salt, sugar and saturated fat (Nutrition & Health). However, there were barriers to replacing the functionality of these ingredients (Food Technology). Most companies would like the government to push reformulation more (Legislation). Traditional meat products and luxury sweet bakery products were considered less suitable for reformulation (Consumer Perspectives). In addition, the reduction of E-numbers was considered important. The important role of the retailer is stressed by the respondents. In conclusion, all four disciplines are important in the reformulation processes in food companies. Reformulation does not only mean the reduction of salt, saturated fat and sugar for companies, but also the reduction of E-numbers.
LINK
Between 2009 and 2013 a project has been executed in the Utrecht region to strengthen the workplace innovation capacity of SMEs (My Company 2.0). The participating companies were asked to fill in a questionnaire on the workplace innovation capacity of the company at two moments: at the beginning (T0) and at the end of the project (T1). The workplace innovation capacity was measured with questions about the organization (responds on changing demands in the environment), labor (employee flexibility), strategy (innovation with other companies) and market (improvement or renewal of products/services). We divided the companies (n=103) into two groups, namely companies that implemented an intervention an companies that did not. We found that the companies that received an intervention during the project had a significantly higher score with regard to the workplace innovation capacity at T1 compared to T0. The companies in which no intervention took place had a small (not significant) decrease in workplace innovation capacity between the baseline- (T0) and the post- test (T1). We also compared the data with data from a national reference population. It appeared that the companies in our study scored higher in workplace innovation capacity at both measurements (T0 and T1) than the reference population
In this proposal, a consortium of knowledge institutes (wo, hbo) and industry aims to carry out the chemical re/upcycling of polyamides and polyurethanes by means of an ammonolysis, a depolymerisation reaction using ammonia (NH3). The products obtained are then purified from impurities and by-products, and in the case of polyurethanes, the amines obtained are reused for resynthesis of the polymer. In the depolymerisation of polyamides, the purified amides are converted to the corresponding amines by (in situ) hydrogenation or a Hofmann rearrangement, thereby forming new sources of amine. Alternatively, the amides are hydrolysed toward the corresponding carboxylic acids and reused in the repolymerisation towards polyamides. The above cycles are particularly suitable for end-of-life plastic streams from sorting installations that are not suitable for mechanical/chemical recycling. Any loss of material is compensated for by synthesis of amines from (mixtures of) end-of-life plastics and biomass (organic waste streams) and from end-of-life polyesters (ammonolysis). The ammonia required for depolymerisation can be synthesised from green hydrogen (Haber-Bosch process).By closing carbon cycles (high carbon efficiency) and supplementing the amines needed for the chain from biomass and end-of-life plastics, a significant CO2 saving is achieved as well as reduction in material input and waste. The research will focus on a number of specific industrially relevant cases/chains and will result in economically, ecologically (including safety) and socially acceptable routes for recycling polyamides and polyurethanes. Commercialisation of the results obtained are foreseen by the companies involved (a.o. Teijin and Covestro). Furthermore, as our project will result in a wide variety of new and drop-in (di)amines from sustainable sources, it will increase the attractiveness to use these sustainable monomers for currently prepared and new polyamides and polyurethanes. Also other market applications (pharma, fine chemicals, coatings, electronics, etc.) are foreseen for the sustainable amines synthesized within our proposition.
Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to collect, manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. Participants in the interviews that we organized preparing this proposal indicated a need for guidance on how to develop DAC within their organization given their unique context (e.g. age and experience of the workforce, presence of legacy systems, high daily workload, lack of knowledge of digitalization). While a lot of attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC. From a structure perspective, the objective of the KIEM proposal will be to explore and solidify the partnership between Breda University of Applied Sciences (BUas), Avans University of Applied Sciences (Avans), Logistics Community Brabant (LCB), van Berkel Logistics BV, Smink Group BV, and iValueImprovement BV. This partnership will be used to develop the preliminary roadmap and pre-test it using action methodology. The action research protocol and preliminary roadmap thereby developed in this KIEM project will form the basis for a subsequent RAAK proposal.
Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. While extensive attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC.