In spite of renewed attention for practices in tourism studies, the analysis of practices is often isolated from theories of practice. This theoretical paper identifies the main strands of practice theory and their relevance and application to tourism research, and develops a new approach to applying practice theory in the study of tourism participation. We propose a conceptual model of tourism practices based on the work of Collins (2004), which emphasises the role of rituals in generating emotional responses. This integrated approach can focus on individuals interacting in groups, as well as explaining why people join and leave specific practices. Charting the shifting of individuals between practices could help to illuminate the dynamics and complexity of tourism systems.
This book – Complexity and Territorial Development – tells the story of how academic staff and students at the Van Hall Larenstein university of applied sciences deal with complexity and planning in education and research. It is intended for everyone who is involved in complex projects, but in particular for current and future students at the university who will be trained in how to handle complex projects. In this book we want to show why planning has become complex, what theories about this subject are relevant, and how this fits in with the practical experience of staff and students.
MULTIFILE
Municipalities often collaborate with other stakeholders in smart city projects to develop and implement technological innovations to address complex urban issues. We propose the shared portfolio approach as an alternative way of collaborating, because we have identified possible limitations when the commonly used single-project approach is adopted in complex contexts, such as the smart city context. The portfolio approach enhances flexibility, an embedded focus and cross-project learning, because partners work on multiple projects – either in parallel or in succession – to develop multiple solutions to a specific problem. An in-depth case study is used to illustrate how the shared portfolio approach works. In practice, these insights can be used by public bodies who aim to collaborate in smart city development or by partners who work on smart city projects and wish to continue their collaboration in a portfolio setting. Conceptually, our paper develops a connection between cross-sector partnership literature and smart city literature by revealing how the shared portfolio approach could be an effective way to deal with the complexities of innovation in the smart city context.
Energy transition is key to achieving a sustainable future. In this transition, an often neglected pillar is raising awareness and educating youth on the benefits, complexities, and urgency of renewable energy supply and energy efficiency. The Master Energy for Society, and particularly the course “Society in Transition”, aims at providing a first overview on the urgency and complexities of the energy transition. However, educating on the energy transition brings challenges: it is a complex topic to understand for students, especially when they have diverse backgrounds. In the last years we have seen a growing interest in the use of gamification approaches in higher institutions. While most practices have been related to digital gaming approaches, there is a new trend: escape rooms. The intended output and proposed innovation is therefore the development and application of an escape room on energy transition to increase knowledge and raise motivation among our students by addressing both hard and soft skills in an innovative and original way. This project is interdisciplinary, multi-disciplinary and transdisciplinary due to the complexity of the topic; it consists of three different stages, including evaluation, and requires the involvement of students and colleagues from the master program. We are confident that this proposed innovation can lead to an improvement, based on relevant literature and previous experiences in other institutions, and has the potential to be successfully implemented in other higher education institutions in The Netherlands.
298 woorden: In the upcoming years the whole concept of mobility will radically change. Decentralization of energy generation, urbanization, digitalization of processes, electrification of vehicles and shared mobility are only some trends which have a strong influence on future mobility. Furthermore, due to the shift towards renewable energy production, the public and the private sector are required to develop new infrastructures, new policies as well as new business models. There are countless opportunities for innovative business models emerging. Companies in this field – such as charging solution provider, project management or consulting companies that are part of this project, Heliox and Over Morgen respectively – are challenged with countless possibilities and increasing complexity. How to overcome this problem? Academic research proposes a promising approach, namely the use of business model patterns for business model innovation. In short, these business model patterns are descriptions of proven practical solutions to common business model challenges. An example for a general pattern would be the business model pattern “Consumables”. It describes how to lock in a customer into an ecosystem by using a subsidized basic product and complement it with overpriced consumables. This pattern works really well and has been used by many companies (e.g. Senseo, HP, or Gillette). To support the business model innovation process of Heliox and Over Morgen as well as companies in the electric mobility space in general, we propose to systematically consolidate and develop business model patterns for the electric mobility sector and to create a database. Electric mobility patterns could not only foster creativity in the business model innovation process but also enhance collaboration in teams. By having a classified list of business model pattern for electric mobility, practitioners are equipped which a heuristic tool to create, extend and revise business models for the future.
MSEs have encountered limitations while pushing the limits of catheter tip sensors performance. The limitations summarized: - sensors are not immune to electrical signal noise, cross talk, and EM fields; - sensors are not immune to high magnetic fields, i.e. not suitable for MR imaging; - extending the amount of sensors on the catheter tip is limited due to cluttering of wires. A fundamentally different approach using integrated optics is chosen for developing a new generation catheter sensors. The complexity of the design and production problems represents a knowledge gap, that can be bridged in the proposed consortium. This project consists of four work packages, total duration two years, subdivided into four phases. A crucial deliverable of the project is presented at the end of phase IV (WP4), namely a demonstrator integrating pressure and temperature sensors (obtained from WP1) with a newly designed readout system. This system is modularly extendable for future catheter tip sensors. In WP1, pressure- and temperature sensors are developed using two design approaches. In WP2 the influence of downscaling an ultrasound MZI device is explored and the microfabrication process parameters are studied. An additional goal of WP2 is to find the most suitable method for measuring lactate concentration. Among the deliverables five manuscripts: manuscript 1 includes simulations and measurements of the developed pressure and temperature sensors, manuscript 2 answers the question: can a grated fiber be used for measuring pressure and temperature on a tip? Manuscript 3 answers the question: which method is most suitable for measuring lactate concentration on a tip? Manuscript 4 answers the question: does a US intensity detector fit on a catheter tip while obeying the LoR? Manuscript 5 describes the performance of the demonstrator (Phase IV), i.e. integration of T/P sensing with a modular read out system.