When everything is destined to be designed, design disappears into the everyday. We simply don’t see it anymore because it’s everywhere. This is the vanishing act of design. At this moment design registers its redundancy: our products, environments and services have been comprehensively improved. Everything has been designed to perfection and is under a permanent upgrade regime. Within such a paradigm, design is enmeshed with the capitalist logic of reproduction. But this does not come without conflicts, struggles and tensions. Chief among these is the situation of design in a planetary procession toward decay. Our dispense culture prompts a yearning for longevity. The computational compulsion to delete brings alive a desire to retrieve objects, ideas and experiences that refuse obsolescence. Society is growing more aware of sustainability and alert to the depletion of this world. For the ambitious designer, it’s time to take the next step: designing the future as a collective relation attuned to life.
MULTIFILE
Most interactive sports-oriented products that are commercially available focus on individual athletes. The ones that focus on team sports rarely go beyond performance monitoring. Therefore, in this case study we focus on team dynamics in secondary school sports teams. These teams typically have to deal with unbalanced engagement due to skill level differences. This can impede the goals of these PE-classes; to raise young people's enthusiasm for a variety of sports and to teach them how to work together as a team. In this project we explore a design solution aimed at balancing engagement in these mixed level sports teams, through an intelligent system of connected light jerseys. The jerseys, iteratively developed through experiential prototypes that were used during secondary school basketball games, were able to measure ball possession and give feedback through a series of light stripes. In this paper we describe two iterations of this case study and our quantitative and qualitative findings of team engagement
LINK
With artificial intelligence (AI) systems entering our working and leisure environments with increasing adaptation and learning capabilities, new opportunities arise for developing hybrid (human-AI) intelligence (HI) systems, comprising new ways of collaboration. However, there is not yet a structured way of specifying design solutions of collaboration for hybrid intelligence (HI) systems and there is a lack of best practices shared across application domains. We address this gap by investigating the generalization of specific design solutions into design patterns that can be shared and applied in different contexts. We present a human-centered bottom-up approach for the specification of design solutions and their abstraction into team design patterns. We apply the proposed approach for 4 concrete HI use cases and show the successful extraction of team design patterns that are generalizable, providing re-usable design components across various domains. This work advances previous research on team design patterns and designing applications of HI systems.
MULTIFILE