City authorities want to know how to match the charging infrastructures for electric vehicles with the demand. Using camera recognition algorithms from artificial intelligence we investigated the behavior of taxis at a charging stations and a taxi stand.
MULTIFILE
Background: Profiling the plant root architecture is vital for selecting resilient crops that can efficiently take up water and nutrients. The high-performance imaging tools available to study root-growth dynamics with the optimal resolution are costly and stationary. In addition, performing nondestructive high-throughput phenotyping to extract the structural and morphological features of roots remains challenging. Results: We developed the MultipleXLab: a modular, mobile, and cost-effective setup to tackle these limitations. The system can continuously monitor thousands of seeds from germination to root development based on a conventional camera attached to a motorized multiaxis-rotational stage and custom-built 3D-printed plate holder with integrated light-emitting diode lighting. We also developed an image segmentation model based on deep learning that allows the users to analyze the data automatically. We tested the MultipleXLab to monitor seed germination and root growth of Arabidopsis developmental, cell cycle, and auxin transport mutants non-invasively at high-throughput and showed that the system provides robust data and allows precise evaluation of germination index and hourly growth rate between mutants. Conclusion: MultipleXLab provides a flexible and user-friendly root phenotyping platform that is an attractive mobile alternative to high-end imaging platforms and stationary growth chambers. It can be used in numerous applications by plant biologists, the seed industry, crop scientists, and breeding companies.
LINK
Over the past few years a growing number of artists have critiqued the ubiquity of identity recognition technologies. Specifically, the use of these technologies by state security programs, tech-giants and multinational corporations has met with opposition and controversy. A popular form of resistance to recognition technology is sought in strategies of masking and camouflage. Zach Blas, Leo Selvaggio, Sterling Crispin and Adam Harvey are among a group of internationally acclaimed artists who have developed subversive anti-facial recognition masks that disrupt identification technologies. This paper examines the ontological underpinnings of these popular and widely exhibited mask projects. Over and against a binary understanding and criticism of identity recognition technology, I propose to take a relational turn to reimagine these technologies not as an object for our eyes, but as a relationship between living organisms and things. A relational perspective cuts through dualist and anthropocentric conceptions of recognition technology opening pathways to intersectional forms of resistance and critique. Moreover, if human-machine relationships are to be understood as coming into being in mutual dependency, if the boundaries between online and offline are always already blurred, if the human and the machine live intertwined lives and it is no longer clear where the one stops and the other starts, we need to revise our understanding of the self. A relational understanding of recognition technology moves away from a notion of the self as an isolated and demarcated entity in favour of an understanding of the self as relationally connected, embedded and interdependent. This could alter the way we relate to machines and multiplies the lines of flight we can take out of a culture of calculated settings.