From the article: "Computing is an interdisciplinary field that can be approached from different points of view. Each point of view has its goals, aims and fundamental assumptions. This makes computing a complex discipline. Moreover, new computing disciplines appear regularly. With the trend that ICT-professionals should have non-ICT competences as well, and non-ICT-professionals should have ICT-competences, new computing curricula are often hybrid in nature. As a hybrid computing curriculum cannot cover the full range of computing, it is interesting to investigate the 'computing part' of such curricula. Our analysis framework consists of three elements: the curricular components 'goals and objectives' and 'instructional strategies', and the underlying epistemological view on the discipline ('cultural styles'). Taking a historical perspective, we describe the origins of the ACM/IEEE Curriculum Recommendation series. We discuss the three main cultural styles of computing: theoretical, scientific and engineering. Observing that in a curriculum the above elements should be aligned, we present three trade-offs for the case of hybrid computing curricula. We apply our results to two concrete examples, Liberal Arts and Computer Science and Front End Development. Based on our investigation, we formulate recommendations for designers of hybrid computing curricula. We recommend, for example, discussing disciplinary boundaries and resulting trade-offs explicitly while designing and documenting curricula." https://doi.org/10.1145/3159450.3159532
DOCUMENT
The Amsterdam University of Applied Sciences started a research and education group on Applied Quantum Computing at September 1st 2020. This group has a focus on Quantum Computing and Quantum Sensing. Quantum Computing is done together with the Computer Science program and Quantum Sensing with the new Technical Physics program which will start September 1st 2021. The group is involved in educational efforts to create a general awareness of Quantum Computing under the umbrella of the innovation hub Quantum.Amsterdam. In February 2021 the group starts a minor Applied Quantum Computing. Students learn how to program quantum algorithms and together with companies such as Capgemini, Qu & Co and SURFsara engage in projects solving real problems.
DOCUMENT
A presentation about a skills gap: industry demands versus learning outcomes. The presentation deals with ongoing research about workplace learning in computing curricula.
DOCUMENT
Author supplied: DOI : http://dx.doi.org/10.1145/2691352.2691357 Assignments and exercises are an essential part of software engineering education. It usually requires a variety of these assignments to cover a desired wide range of educational objectives as defined in the revised Bloom's taxonomy. But such a variety has inherent problems, e.g. that students might not see the connections between the assignments and find it hard to generalize the covered concepts. In this paper we present the educational design pattern Multi-Level Assignment which addresses these problems. It enables the assignment designer to incorporate a variety of educational objectives into a single assignment by including the concepts on multiple knowledge and process levels. The description as educational design pattern and the provided three implementation examples make this approach directly applicable for other software engineering educators.
LINK
Despite the willingness of many educational institutions worldwide to embrace Education for Sustainable Development and Education for Sustainable Development Goals, critical scholars have pointed out that the very enterprise of sustainable development is not without its contradictions. Therefore, any education that engages with sustainable development needs to be carefully reviewed, rather than supported, in its ambition to promote the supposedly universally desirable aims. The rhetoric of sustainable development as meeting the needs of present and future generations is largely anthropocentric in failing to take nonhuman species into account when setting up pragmatic and ethical objectives. Similarly to the Millennium Development Goals (MDGs) that have helped to raise living standards across the world, but have largely failed to address environmental sustainability challenges, the Sustainability Development Goals (SDGs) tend to prioritize “inclusive economic growth” at the expense of ecological integrity, which is very likely to negatively affect not only nonhuman species but also future generations and their quality of life. Thus, as this chapter will argue, universally applicable Education for Sustainable Development Goals (ESDGs) is problematic in the context of addressing the long-term sustainability for both human and nonhuman inhabitants of the planet. Given escalating climate change, biodiversity loss, pollution, and depletion of natural resources, this chapter questions whether ESDGs can qualify as a desirable “quality education”. The paradoxes of sustainable development and ways forward that seem a better alternative for ESDG include indigenous/traditional learning, ecopedagogy, ecocentric education, and education for degrowth, steady-state, and Cradle-to-Cradle and circular economy. Advantages of universal education are also highlighted, as any education that supports basic literacy, numeracy, and values attributed to the intrinsic rights of humans and nonhumans can help students to be equipped to deal with social and environmental challenges. https://doi.org/10.3390/books978-3-03897-893-0-1 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
We found out that 25 % of our students came to study at the Electrical & Electronic Engineering department (E&E) because they were active (as a hobby) in music. Because of this the E&E department offers their students to work in video and audio themes in all projects of their education. From our inquiries we found out what students interests are and we use these interests for new project themes. The study has been changed in such a way that it is possible to have these project themes twice in every semester. Amongst them are, besides music, e.g. medical, sports, automotive and mechatronics. Other inquiries show that 47 % of our students choose for ICT because they are interested in computers or programming or do this for their hobby. Inspired by this the ICT department defined four new fields of interest: game design, management & security, mobile computing and life style. Both E&E and ICT connect the projects in their courses directly to industry and in this way students and lecturers are intensively involved in industry. From two surveys we learned that working this way is an excellent way to get students motivated and gives them drive and enjoyment in their study.
DOCUMENT
Over the last two decades, institutions for higher education such as universities and colleges have rapidly expanded and as a result have experienced profound changes in processes of research and organization. However, the rapid expansion and change has fuelled concerns about issues such as educators' technology professional development. Despite the educational value of emerging technologies in schools, the introduction has not yet enjoyed much success. Effective use of information and communication technologies requires a substantial change in pedagogical practice. Traditional training and learning approaches cannot cope with the rising demand on educators to make use of innovative technologies in their teaching. As a result, educational institutions as well as the public are more and more aware of the need for adequate technology professional development. The focus of this paper is to look at action research as a qualitative research methodology for studying technology professional development in HE in order to improve teaching and learning with ICTs at the tertiary level. The data discussed in this paper have been drawn from a cross institutional setting at Fontys University of Applied Sciences, The Netherlands. The data were collected and analysed according to a qualitative approach.
DOCUMENT
eHealth education should be integrated into vocational training and continuous professional development programmes. In this opinion article, we aim to support organisers of Continuing Professional Development (CPD) and teachers delivering medical vocational training by providing recommendations for eHealth education. First, we describe what is required to help primary care professionals and trainees learn about eHealth. Second, we elaborate on how eHealth education might be provided
DOCUMENT
Numeracy and mathematics education in vocational education is under pressure to keep up with the rapid changes in the workplace due to developments in workplace mathematics and the ubiquitous availability of technological tools. Vocational education is a large stream in education for 12- to 20-years-olds in the Netherlands and the numeracy and mathematics curriculum is on the brink of a reform. To assess what is known from research on numeracy in vocational education, we are in the process of conducting a systematic review of the international scientific literature of the past five years to get an overview of the recent developments and to answer research questions on the developments in vocational educational practices. The work is still in progress. We will present preliminary and global results. We see vocational education from the perspective of (young) adults learning mathematics.
LINK
Learning in the workplace is crucial in higher engineering education, since it allows students to transfer knowledge and skills from university to professional engineering practice. Learning analytics endeavors in higher education have primarily focused on classroom-based learning. Recently, workplace learning analytics has become an emergent research area, with target users being workers, students and trainers. We propose technology for workplace learning analytics that allows program managers of higher engineering education programs to get insight into the workplace learning of their students, while ensuring privacy of students' personal data by design. Using a design-based agile methodology, we designed and developed a customizable workplace learning dashboard. From the evaluation with program managers in the computing domain, we can conclude that such technology is feasible and promising. The proposed technology was designed to be generalizable to other (engineering) domains. A next logical step would be to evaluate and improve the proposed technology within other engineering domains.
DOCUMENT