To reduce greenhouse gas emissions, countries around the world are pursuing electrification policies. In residential areas, electrification will increase electricity supply and demand, which is expected to increase grid congestion at a faster rate than grids can be reinforced. Battery energy storage (BES) has the potential to reduce grid congestion and defer grid reinforcement, thus supporting the energy transition. But, BES could equally exacerbate grid congestion. This leads to the question: What are the trade-offs between different battery control strategies, considering battery performance and battery grid impacts? This paper addresses this question using the battery energy storage evaluation method (BESEM), which interlinks a BES model with an electricity grid model to simulate the interactions between these two systems. In this paper, the BESEM is applied to a case study, wherein the relative effects of different BES control strategies are compared. The results from this case study indicate that batteries can reduce grid congestion if they are passively controlled (i.e., constraining battery power) or actively controlled (i.e., overriding normal battery operations). Using batteries to reduce congestion was found to reduce the primary benefits provided by the batteries to the battery owners, but could increase secondary benefits. Further, passive battery controls were found to be nearly as effective as active battery controls at reducing grid congestion in certain situations. These findings indicate that the trade-offs between different battery control strategies are not always obvious, and should be evaluated using a method like the BESEM.
DOCUMENT
Passenger flow management is an important issue at many airports around the world. There are high concentrations of passengers arriving and leaving the airport in waves of large volumes in short periods, particularly in big hubs. This might cause congestion in some locations depending on the layout of the terminal building. With a combination of real airport data, as well as synthetic data obtained through an airport simulator, a Long Short-Term Memory Recurrent Neural Network has been implemented to predict the possible trajectories that passengers may travel within the airport depending on user-defined passenger profiles. The aim of this research is to improve passenger flow predictability and situational awareness to make a more efficient use of the airport, that could also positively impact communication with public and private land transport operators.
DOCUMENT
Passenger flow management is an important issue at many airports around the world. There are high concentrations of passengers arriving and leaving the airport in waves of large volumes in short periods, particularly in big hubs. This might cause congestion in some locations depending on the layout of the terminal building. With a combination of real airport data, as well as synthetic data obtained through an airport simulator, a Long Short-Term Memory Recurrent Neural Network has been implemented to predict the possible trajectories that passengers may travel within the airport depending on user-defined passenger profiles. The aim of this research is to improve passenger flow predictability and situational awareness to make a more efficient use of the airport, that could also positively impact communication with public and private land transport operators.
DOCUMENT
The effective operation of distributed energy sources relies significantly on the communication systems employed in microgrids. This article explores the fundamental communication requirements, structures, and protocols necessary to establish a secure connection in microgrids. This article examines the present difficulties facing, and progress in, smart microgrid communication technologies, including wired and wireless networks. Furthermore, it evaluates the incorporation of diverse security methods. This article showcases a case study that illustrates the implementation of a distributed cyber-security communication system in a microgrid setting. The study concludes by emphasizing the ongoing research endeavors and suggesting potential future research paths in the field of microgrid communications.
MULTIFILE
The constant growth of air traffic, especially in Europe, is putting pressure on airports, which, in turn, are suffering congestion problems. The airspace surrounding airport, terminal manoeuvring area (TMA), is particularly congested, since it accommodates all the converging traffic to and from airports. Besides airspace, airport ground capacity is also facing congestion problems, as the inefficiencies coming from airspace operations are transferred to airport ground and vice versa. The main consequences of congestion at airport airspace and ground, is given by the amount of delay generated, which is, in turn, transferred to other airports within the network. Congestion problems affect also the workload of air traffic controllers that need to handle this big amount of traffic.This thesis deals with the optimization of the integrated airport operations, considering the airport from a holistic point of view, by including operations such as airspace and ground together. Unlike other studies in this field of research, this thesis contributes by supporting the decisions of air traffic controllers regarding aircraft sequencing and by mitigating congestion on the airport ground area. The airport ground operations and airspace operations can be tackled with two different levels of abstractions, macroscopic or microscopic, based on the time-frame for decision-making purposes. In this thesis, the airport operations are modeled at a macroscopic level.The problem is formulated as an optimization model by identifying an objective function that considers the amount of conflicts in the airspace and capacity overload on the airport ground; constraints given by regulations on separation minima between consecutive aircraft in the airspace and on the runway; decision variables related to aircraft entry time and entry speed in the airspace, landing runway and departing runway choice and pushback time. The optimization model is solved by implementing a sliding window approach and an adapted version of the metaheuristic simulated annealing. Uncertainty is included in the operations by developing a simulation model and by including stochastic variables that represent the most significant sources of uncertainty when considering operations at a macroscopic level, such as deviation from the entry time in the airspace, deviation in the average taxi time and deviation in the pushback time. In this thesis, optimization and simulation techniques are combined together by developing two methods that aim at improving the solution robustness and feasibility. The first method acts as a validation tool for the optimized solution, and it improves the robustness of solution by iteratively fine-tuning some of the optimization model input parameters. The second method embeds the optimization in a simulation environment by taking full advantage of the sliding window approach and creating a loop for a continuous improvement of the optimized solution at each window of the sliding window approach. Both methods prove to be effective by improving the performance, lowering the total amount of conflicts up to 23.33% for the first method and up to 11.2% for the second method, however, in contrast to the deterministic method, the two methods they are not able to achieve a conflict-free scenario due to the effect of uncertainty.In general, the research conducted in this thesis highlights that uncertainty is a factor that affects to a large extent the feasibility of optimized solution when applied to real-world instances, and it, moreover, confirms that using simulation together with optimization has the potentiality toivdeal with uncertainty. The framework developed can be potentially applied to similar problems and different optimization solving methods can be adapted to it.Keywords: Optimization, Simulation, Integrated airport operations, Uncertainty
MULTIFILE
A large share of urban freight in cities is related to construction works. Construction is required to create attractive, sustainable and economically viable cities. When activities at and around construction sites are not managed effectively, they can have a negative impact on the cities liveability. Construction companies implementing logistics concepts show a reduction of logistic costs, less congestion around the sites and improved productivity and safety. The client initially sets the ‘ground rules’ for construction in the tendering process. This paper explores how tendering for construction projects can support sustainable urban construction logistics. We explore the potential for tendering construction projects, by both public and private clients, for sustainable urban construction logistics and we present a conceptual framework for specifying ‘logistics quality’ as a quality criterion for EMAT (Economically Most Advantageous Tender). Our exploration results in questions for further research in tendering for sustainable urban construction logistics.
DOCUMENT
This study presents a model-based analysis of the groundconnectivity performance of the future Santa Lucia-Mexico City multi-airport system. The plan of the currentgovernment is to connect the two airports by a dedicatedline, either by bus or other transport so that passengersand airlines can get the benefit of a coordinatedoperation. Performance indicators such as minimumconnecting time, vehicle utilization and passengerwaiting time are used to evaluate the future performance.Results reveal that when all passengers are allowed to usethe connection, a big number of vehicles are required forproviding a good level of service while in the case of arestricted use to only transfer passengers the operationwith Bus would have a good performance.
DOCUMENT
While the Municipality of Amsterdam wants to expand the electric vehicle public charging infrastructure to reach carbon-neutral objectives, the Distribution System Operator cannot allow new charging stations where low-voltage transformers are reaching their maximum capacity. To solve this situation, a smart charging project called Flexpower is being tested in some districts. Charging power is limited during peak times to avoid grid congestion and, therefore, enable the expansion of charging infrastructure while deferring grid investments. This work simulates the implementation of the Flexpower strategy with high penetration of electric vehicles, considering dynamic and local power limits, to assess the impact on both the satisfaction of electric vehicle users and the business model of the Charging Point Operator. A stochastic approach, based on Gaussian Mixture Models, has been used to model different profiles of electric vehicle users using data from the Amsterdam public electric vehicle charging infrastructure. Several key performance indicators have been defined to assess the impact of such charging limitations on the different stakeholders. The results show that, while Amsterdam’s existing public charging infrastructure can host just twice the current electric vehicle demand, the application of Flexpower will enable the growth in charging stations without requiring grid upgrades. Even with 7 times more charging sessions, Flexpower could provide a power peak reduction of 57% while supplying 98% of the total energy required by electric vehicle users.
DOCUMENT
Airport management is frequently faced with a problem of assigning flights to available stands and parking positions in the most economical way that would comply with airline policies and suffer minimum changes due to any operational disruptions. This work presents a novel approach to the most common airport problem – efficient stand assignment. The described algorithm combines benefits of data-mining and metaheuristic approaches and generates qualitative solutions, aware of delay trends and airport performance perturbations. The presented work provides promising solutions from the starting moments of computation, in addition, it delivers to the airport stakeholders delay-aware stand assignment, and facilitates the estimation of risk and consequences of any operational disruptions on the slot adherence.
MULTIFILE
Key takeaways from the project underscore the importance of fostering long-term collaborations between technical experts, communities, and institutional partners. By integrating technical innovation with human-centred design, the SUSTENANCE project has not only advanced renewable energy adoption but also established a framework for empowering communities to actively participate in sustainable energy transitions. Moving forward, the lessons learned, and solutions developed provide a solid foundation for addressing future challenges in energy system decarbonization and resilience.
MULTIFILE