The growth in urban population and economic upturnis leading to higher demand for construction, repairand renovation works in cities. Houses, public utilities,retail spaces, offices and infrastructure need toadapt to cope with the increasing number of residentsand visitors, urban functions and changing standards.Construction projects contribute to more attractive,sustainable and economically viable urban areas oncethey are finished. However, transport activities relatedto construction works have negative impacts on thesurrounding community if not handled appropriately.It is estimated that 15 to 20 percent of heavy goodsvehicles in cities are related to construction, and 30to 40 percent of light commercial vans [1]. In the citiesstudied in the CIVIC project, construction-relatedtransport was found to be one of the biggest challengesto improving sustainability. Smarter, cleaner and saferconstruction logistics solutions in urban areas areneeded for environmental, societal and economicreasons. However, in many European cities and metropolitanareas the sense of urgency is not evident or alack of knowledge is creating passivity.
DOCUMENT
A large share of urban freight in cities is related to construction works. Construction is required to create attractive, sustainable and economically viable cities. When activities at and around construction sites are not managed effectively, they can have a negative impact on the cities liveability. Construction companies implementing logistics concepts show a reduction of logistic costs, less congestion around the sites and improved productivity and safety. The client initially sets the ‘ground rules’ for construction in the tendering process. This paper explores how tendering for construction projects can support sustainable urban construction logistics. We explore the potential for tendering construction projects, by both public and private clients, for sustainable urban construction logistics and we present a conceptual framework for specifying ‘logistics quality’ as a quality criterion for EMAT (Economically Most Advantageous Tender). Our exploration results in questions for further research in tendering for sustainable urban construction logistics.
DOCUMENT
Urban construction logistics has a big impact on cities. The topic of this paper is governance strategies for realising more sustainable urban construction logistics. Although not much research has been done in the field of governance of construction logistics, several authors have stressed the fragmented nature of the construction industry and the importance of collaboration in urban construction logistics as issues. A literature review was done to identify the barriers in collaboration. Based on these barriers the research objective was to determine which drivers for collaborative governance are needed to improve urban construction logistics. The methods for data collection were semi-structured interviews and a focus group. The collaborative governance model is applied as a strategy to overcome the barriers in collaboration and governance identified. Key findings are both formal and informal barriers hinder the governance of construction logistics. Based on a collaborative governance model we identified four for improving collaborative governance.
DOCUMENT
from the article: "Abstract The way in which construction logistics is organised has considerable impact on production flow, transportation efficiency, greenhouse gas emissions and congestion, particularly in urban areas such as city centres. In cities such as London and Amsterdam municipalities have issued new legislation and stricter conditions for vehicles to be able to access cities and city centres in particular. Considerate clients, public as well private, have started developing tender policies to encourage contractors to reduce the environmental impact of construction projects. This paper reports on an ongoing research project applying and assessing developments in the field of construction logistics in the Netherlands. The cases include contractors and third party logistics providers applying consolidation centres and dedicated software solutions to increase transportation efficiency. The case show various results of JIT logistics management applied to urban construction projects leading to higher transportation efficiencies, and reduced environmental impact and increased production efficiency on site. The data collections included to-site en on-site observations, measurement and interviews. The research has shown considerable reductions of vehicles to deliver goods and to transport workers to site. In addition the research has shown increased production flow and less waste such as inventory, waiting and unnecessary motion on site."
DOCUMENT
This deliverable focuses on the construction industry of the Netherlands.The construction industry has a reputation for being inefficient. Innovation in construction logistics is needed to ensure that cities stay liveable. To create innovation in constructionlogistics, collaboration between stakeholders is necessary. However, the lack of reliable quantitative data is a problem. Reliable quantitative data are necessary to convince stakeholders for new collaborations that are needed for innovations in construction logistics. There is, therefore, a need to examine the current state of construction logistics calculation models. The integrated logistics concept (ILC) is used to examine construction logistics processes and to address factors that obstruct the development of construction logistics calculation models.
DOCUMENT
Abstract: Last few years the hindrance, accidents, pollution and other negative side effects of construction projects and namely construction transport have become an issue particularly in urban areas across Europe such as in London, and in the Netherlands as well, including the cities of Utrecht, Rotterdam and Amsterdam. Municipalities have issued new legislation and stricter conditions for vehicles to be able to access cities and city centres in particular and accessibility of older and polluting vehicles. Considerate clients, public as well private, have started developing tender policies to encourage contractors to reduce the environmental impact of construction projects. Contractors and third party logistics providers have started applying consolidation centres. These developments have shown considerable reductions of number of vehicles needed to deliver goods and to transport workers to site. In addition these developments have led to increased transport efficiency, labour productivity and cost reductions on site as well as down the supply chain. Besides these developments have led to increased innovations in the field of logistics planning software, use of ICT , and handling hardware and equipment. This paper gives an overview of current developments and applications in the field of construction logistics in the Netherlands, and in a few project cases in particular. Those cases are underway as part of an ongoing applied research project and studied by using an ethnographic participative action research approach. The case findings and project results show initial advantages how the projects, the firms involved and the environment can profit from the advancement of logistics management leading to reduced environmental impact and increased efficiencies of construction transport.
DOCUMENT
From a circular standpoint it is interesting to reuse as much as possible construction and demolition waste (CDW) into new building projects. In most cases CDW will not be directly reusable and will need to be processed and stored first. In order to turn this into a successful business case CDW will need to be reused on a large scale. In this paper we present the concept of a centralized and coordinated location in the City of Utrecht where construction and demolition waste is collected, sorted, worked, stored for reuse, or shipped elsewhere for further processing in renewed materials. This has expected advantages for the amount of material reuse, financial advantages for firms and clients, generating employability in the logistics and processing of materials, optimizing the transport and distribution of materials through the city, and thus the reduction of emissions and congestion. In the paper we explore the local facility of a Circular Hub, and the potential effects on circular reuse, and other effects within the City of Utrecht.
DOCUMENT
Little progress has been made in recent years toward achieving a fully circular economy by 2050. Implementing circular urban supply chains is a major economic transformation that can only work if significant coordination problems between the actors involved are solved. On the one hand, this requires the implementation of efficient urban collection technologies, where process industries collaborate hand-in-hand with manufacturers, urban waste treatment, and city logistics specialists and are supported by digital solutions for visibility and planning. But on the other hand, it also requires implementing regional and urban ecosystems connected by innovative CO2-neutral circular city logistics systems smoothly and sustainably managing the regional flow of resources and data, often at large and with interfaces between industrial processes and private and private and public actors. What are relevant research questions from a city logistics perspective?
MULTIFILE
The demand for the transport of goods within the city is rising and with that the number of vans driving around. This has adverse effects on air quality, noise, safety and liveability in the city. LEFVs (Light Electric Freight Vehicles) offer a potential solution for this. There is already a lot of enthusiasm for the LEFVs and several companies have started offering the vehicles. Still many companies are hesitating to start and experience. New knowledge is needed of logistics concepts for the application of LEFVs. This paper shows the outcomes of eight case studies about what is needed to successfully deploy LEFVs for city logistics.
DOCUMENT
The aim of this research/project is to investigate and analyze the opportunities and challenges of implementing AI technologies in general and in the transport and logistics sectors. Also, the potential impacts of AI at sectoral, regional, and societal scales that can be identified and chan- neled, in the field of transport and logistics sectors, are investigated. Special attention will be given to the importance and significance of AI adoption in the development of sustainable transport and logistics activities using intelligent and autonomous transport and cleaner transport modalities. The emphasis here is therefore on the pursuit of ‘zero emissions’ in transport and logistics at the urban/city and regional levels.Another goal of this study is to examine a new path for follow-up research topics related to the economic and societal impacts of AI technology and the adoption of AI systems at organizational and sectoral levels.This report is based on an exploratory/descriptive analysis and focuses mainly on the examination of existing literature and (empirical) scientific research publica- tions, previous and ongoing AI initiatives and projects (use cases), policy documents, etc., especially in the fields of transport and logistics in the Netherlands. It presents and discusses many aspects of existing challenges and opportunities that face organizations, activities, and individuals when adopting AI technology and systems.
DOCUMENT