Despite the efforts of governments and firms, the construction industry is trailing other industries in labour productivity. Construction companies are interested in increasing their labour productivity, particularly when demand grows and construction firms cope with labour shortages. Off-site construction has proved to be a favourable policy to increase labour productivity. However, a complete understanding of the factors affecting construction labour productivity is lacking, and it is unclear which factors are influenced by off-site construction. This study developed a conceptual model describing how 15 factors influence the construction process and make a difference in labour productivity between off-site and on-site construction. The conceptual model shows that all 15 factors affect labour productivity in three ways: through direct effects, indirect effects and causal loops. The model is a starting point for further research to determine the impact of off-site construction on labour productivity.
MULTIFILE
from the paper: "This paper presents a research endeavouring to model site work in a 4D BIM model. Next simulations are performed with this model in 5 scenarios including specific interventions in work organisation, notably changing positons of facilities for site workers. A case study has been done in a construction project in the Netherlands. The research has showed the possibility to model time use of site workers in 4D BIM. Next the research has showed potential to perform and calculate specific interventions in the model, and prospect realistic changes in productive time use as a result."
DOCUMENT
In recent years, a step change has been seen in the rate of adoption of Industry 4.0 technologies by manufacturers and industrial organizations alike. This article discusses the current state of the art in the adoption of Industry 4.0 technologies within the construction industry. Increasing complexity in onsite construction projects coupled with the need for higher productivity is leading to increased interest in the potential use of Industry 4.0 technologies. This article discusses the relevance of the following key Industry 4.0 technologies to construction: data analytics and artificial intelligence, robotics and automation, building information management, sensors and wearables, digital twin, and industrial connectivity. Industrial connectivity is a key aspect as it ensures that all Industry 4.0 technologies are interconnected allowing the full benefits to be realized. This article also presents a research agenda for the adoption of Industry 4.0 technologies within the construction sector, a three-phase use of intelligent assets from the point of manufacture up to after build, and a four-staged R&D process for the implementation of smart wearables in a digital enhanced construction site.
DOCUMENT
Abstract: Last few years the hindrance, accidents, pollution and other negative side effects of construction projects and namely construction transport have become an issue particularly in urban areas across Europe such as in London, and in the Netherlands as well, including the cities of Utrecht, Rotterdam and Amsterdam. Municipalities have issued new legislation and stricter conditions for vehicles to be able to access cities and city centres in particular and accessibility of older and polluting vehicles. Considerate clients, public as well private, have started developing tender policies to encourage contractors to reduce the environmental impact of construction projects. Contractors and third party logistics providers have started applying consolidation centres. These developments have shown considerable reductions of number of vehicles needed to deliver goods and to transport workers to site. In addition these developments have led to increased transport efficiency, labour productivity and cost reductions on site as well as down the supply chain. Besides these developments have led to increased innovations in the field of logistics planning software, use of ICT , and handling hardware and equipment. This paper gives an overview of current developments and applications in the field of construction logistics in the Netherlands, and in a few project cases in particular. Those cases are underway as part of an ongoing applied research project and studied by using an ethnographic participative action research approach. The case findings and project results show initial advantages how the projects, the firms involved and the environment can profit from the advancement of logistics management leading to reduced environmental impact and increased efficiencies of construction transport.
DOCUMENT
from the article: "Abstract The way in which construction logistics is organised has considerable impact on production flow, transportation efficiency, greenhouse gas emissions and congestion, particularly in urban areas such as city centres. In cities such as London and Amsterdam municipalities have issued new legislation and stricter conditions for vehicles to be able to access cities and city centres in particular. Considerate clients, public as well private, have started developing tender policies to encourage contractors to reduce the environmental impact of construction projects. This paper reports on an ongoing research project applying and assessing developments in the field of construction logistics in the Netherlands. The cases include contractors and third party logistics providers applying consolidation centres and dedicated software solutions to increase transportation efficiency. The case show various results of JIT logistics management applied to urban construction projects leading to higher transportation efficiencies, and reduced environmental impact and increased production efficiency on site. The data collections included to-site en on-site observations, measurement and interviews. The research has shown considerable reductions of vehicles to deliver goods and to transport workers to site. In addition the research has shown increased production flow and less waste such as inventory, waiting and unnecessary motion on site."
DOCUMENT
from the publisher's site: "The purpose of this paper is to investigate the nature of qualitative construction partnering research. Design/methodology/approach. In total, 20 qualitative peer-reviewed papers about construction partnering research are reviewed. Findings: The results show four methodological gaps. All identified gaps have in common that specific time and place dependent details that may have influenced understanding of studied individuals are underexposed. Research limitations/implications The main limitation of this study is that empirical-based papers are divided into either qualitative or quantitative research, but the boundary between those categories is not as black and white as it may look like in first instance." Marieke Venselaar, Hans Wamelink, (2017) "The nature of qualitative construction partnering research: literature review", Engineering, Construction and Architectural Management, Vol. 24 Issue: 6, pp.1092-1118, https://doi.org/10.1108/ECAM-04-2016-0098
DOCUMENT
The labor productivity of construction projects is low. This urges construction companies to increase their labor efficiency, particularly when demands grow and labor is scarce. This blog introduces an overview that helps practitioners identify causes of low productivity to find and eliminate the root causes.
LINK
From the article: Abstract. This exploratory and conceptual article sets out to research what arguments and possibilities for experimentation in construction exists and if experimentation can contribute towards more innovative construction as a whole. Traditional, -western- construction is very conservative and regional, often following a traditional and linear design process, which focuses on front-loaded cost savings and repetitive efficiency, rather than securing market position through innovation. Thus becoming a hindrance for the development of the sector as a whole. Exploring the effects of using the, in other design-sectors commonly and successfully practiced, “four-phased iterative method” in architectural construction could be the start of transforming the conservative construction industry towards a more innovative construction industry. The goal of this research is to find whether the proposed strategy would indeed result in a higher learning curve and more innovation during the - architectural- process. Preliminary research indicates that there is argumentation for a more experimental approach to construction.
DOCUMENT
From the article: "Project execution in the construction industry faces major challenges, e.g. difficulty in coordination and cooperation. Operational procurement during project execution is no exception. In this paper we construct a maturity model, based on earlier work, consisting of six dimensions (goal, control, process, organization, information, technology) and five maturity stages (transactional-oriented, commercial-oriented, coordination, internal-optimized, external-optimized). The model can be used to determine the level of procurement maturity for each of the dimensions, and for the determination of a strategy for growth in the construction industry. With input from a major construction firm in the Netherlands, through simulating tooling, the model is evaluated for its contribution to growth in operational excellence. Results of the simulation show support for a relation between maturity growth and increased operational excellence." Recommended Citation Xing, Xiaochun; Versendaal, Johan; van den Akker, Marjan; and De Bevere, Bastiaan, "Maturity of Operational Procurement in the Construction Industry: A Business/IT-Alignment Perspective" (2011). BLED 2011 Proceedings. Paper 22. http://aisel.aisnet.org/bled2011/22 Affiliation: Xing Xiaochun - Swets Information Services, Netherlands; Johan Versendaal - Utrecht University, Netherlands; HU University of Applied Sciences, Netherlands; Marjan van den Akker - Utrecht University, Netherlands; Bastiaan De Bevere - Ballast Nedam, Netherlands.
MULTIFILE
Dealing with and maintaining high-quality standards in the design and construction phases is challenging, especially for on-site construction. Issues like improper implementation of building components and poor communication can widen the gap between design specifications and actual conditions. To prevent this, particularly for energy-efficient buildings, it is vital to develop resilient, sustainable strategies. These should optimize resource use, minimize environmental impact, and enhance livability, contributing to carbon neutrality by 2050 and climate change mitigation. Traditional post-occupancy evaluations, which identify defects after construction, are impractical for addressing energy performance gaps. A new, real-time inspection approach is necessary throughout the construction process. This paper suggests an innovative guideline for prefabricated buildings, emphasizing digital ‘self-instruction’ and ‘self-inspection’. These procedures ensure activities impacting quality adhere to specific instructions, drawings, and 3D models, incorporating the relevant acceptance criteria to verify completion. This methodology, promoting alignment with planned energy-efficient features, is supported by BIM-based software and Augmented Reality (AR) tools, embodying Industry 4.0 principles. BIM (Building Information Modeling) and AR bridge the gap between virtual design and actual construction, improving stakeholder communication and enabling real-time monitoring and adjustments. This integration fosters accuracy and efficiency, which are key for energy-efficient and nearly zero-energy buildings, marking a shift towards a more precise, collaborative, and environmentally sensible construction industry.
DOCUMENT