The study provides positive preliminary evidence supporting validity of S-DT tomeasure fingertip force coordination in children and adolescents.
This paper presents the design and the results of a comparative study of multidisciplinary on-scene command teams at work in virtual emergency training exercises. The principal goals of the study were to understand how "on-scene command teams" coordinate on multidisciplinary objectives and tasks, and how the manner in which this is done affects their performance. The study involved 20 on-scene command teams consisting of various individuals, such as police, fire and medical services personnel, municipal officers and infrastructure operators, drawn from a Safety Region in The Netherlands. Integrated video recordings by five synchronized cameras captured the coordination processes during the virtual exercises. The integrated and synchronized video recordings were then transformed into numerical data for analysis. Performance was operationalized by scoring the progress and completion of emergency management tasks for which individual members and/or teams as a whole were responsible. Team coordination was operationalized using network centrality and density measures. The significant findings are the following: (i) emergency management performance and coordination patterns within and among on-scene command teams have considerable variation; and (ii) teams that use less coordination during the intermediate phases of emergency management perform significantly better than teams that do not, moreover, actors who have central positions in a network are better able to achieve their performance goals.
LINK
Background. Children with developmental coordination disorder (DCD) face evident motor difficulties in daily functioning. Little is known, however, about their difficulties in specific activities of daily living (ADL). Objective. To (a) investigate differences between children with DCD and their typically developing peers, for ADL performance, learning, and participation, and (b) explore the predictive values of these aspects. Design. Cross-sectional study.Methods: Both in a clinical sample of children diagnosed with DCD (n=25, age range 5-8 years; 21 males) and typically developing peers (25 matched controls), parents completed the DCDDaily-Q. Differences in scores between the groups were investigated using T-tests for performance and participation, and Pearson’s Chi-square for learning. Multiple regression analyses were performed to explore the predictive values of performance, learning, and participation. Results. Compared to peers, children with DCD showed poor performance of ADL (p≤.005 for all items), delays in learning of ADL p≤.002 for all items), and less frequent participation in some ADL (p=.001 for mean total scores, p≤.05 for 7 out of 23 items). Children with DCD demonstrated heterogeneous patterns of performance (poor in 10-80% of the items) and learning (delayed in 0-100% of the items). In the DCD group, delays in learning of ADL were a predictor for poor performance of ADL (p=.001), and poor performance of ADL was a predictor for less frequent participation in ADL compared to peers (p=.040). Limitations. A limited number of children with DCD was addressed in this study.Conclusions. This study highlights the impact of DCD on children’s daily lives and the need for tailored intervention.
MUSE supports the CIVITAS Community to increase its impact on urban mobility policy making and advance it to a higher level of knowledge, exchange, and sustainability.As the current Coordination and Support Action for the CIVITAS Initiative, MUSE primarily engages in support activities to boost the impact of CIVITAS Community activities on sustainable urban mobility policy. Its main objectives are to:- Act as a destination for knowledge developed by the CIVITAS Community over the past twenty years.- Expand and strengthen relationships between cities and stakeholders at all levels.- Support the enrichment of the wider urban mobility community by providing learning opportunities.Through these goals, the CIVITAS Initiative strives to support the mobility and transport goals of the European Commission, and in turn those in the European Green Deal.Breda University of Applied Sciences is the task leader of Task 7.3: Exploitation of the Mobility Educational Network and Task 7.4: Mobility Powered by Youth Facilitation.
The CARTS (Collaborative Aerial Robotic Team for Safety and Security) project aims to improve autonomous firefighting operations through an collaborative drone system. The system combines a sensing drone optimized for patrolling and fire detection with an action drone equipped for fire suppression. While current urban safety operations rely on manually operated drones that face significant limitations in speed, accessibility, and coordination, CARTS addresses these challenges by creating a system that enhances operational efficiency through minimal human intervention, while building on previous research with the IFFS drone project. This feasibility study focuses on developing effective coordination between the sensing and action drones, implementing fire detection and localization algorithms, and establishing parameters for autonomous flight planning. Through this innovative collaborative drone approach, we aim to significantly improve both fire detection and suppression capabilities. A critical aspect of the project involves ensuring reliable and safe operation under various environmental conditions. This feasibility study aims to explore the potential of a sensing drone with detection capabilities while investigating coordination mechanisms between the sensing and action drones. We will examine autonomous flight planning approaches and test initial prototypes in controlled environments to assess technical feasibility and safety considerations. If successful, this exploratory work will provide valuable insights for future research into autonomous collaborative drone systems, currently focused on firefighting. This could lead to larger follow-up projects expanding the concept to other safety and security applications.
The SPRONG-collaboration “Collective process development for an innovative chemical industry” (CONNECT) aims to accelerate the chemical industry’s climate/sustainability transition by process development of innovative chemical processes. The CONNECT SPRONG-group integrates the expertise of the research groups “Material Sciences” (Zuyd Hogeschool), “Making Industry Sustainable” (Hogeschool Rotterdam), “Innovative Testing in Life Sciences & Chemistry” and “Circular Water” (both Hogeschool Utrecht) and affiliated knowledge centres (Centres of Expertise CHILL [affiliated to Zuyd] and HRTech, and Utrecht Science Park InnovationLab). The combined CONNECT-expertise generates critical mass to facilitate process development of necessary energy-/material-efficient processes for the 2050 goals of the Knowledge and Innovation Agenda (KIA) Climate and Energy (mission C) using Chemical Key Technologies. CONNECT focuses on process development/chemical engineering. We will collaborate with SPRONG-groups centred on chemistry and other non-SPRONG initiatives. The CONNECT-consortium will generate a Learning Community of the core group (universities of applied science and knowledge centres), companies (high-tech equipment, engineering and chemical end-users), secondary vocational training, universities, sustainability institutes and regional network organizations that will facilitate research, demand articulation and professionalization of students and professionals. In the CONNECT-trajectory, four field labs will be integrated and strengthened with necessary coordination, organisation, expertise and equipment to facilitate chemical innovations to bridge the innovation valley-of-death between feasibility studies and high technology-readiness-level pilot plant infrastructure. The CONNECT-field labs will combine experimental and theoretical approaches to generate high-quality data that can be used for modelling and predict the impact of flow chemical technologies. The CONNECT-trajectory will optimize research quality systems (e.g. PDCA, data management, impact). At the end of the CONNECT-trajectory, the SPRONG-group will have become the process development/chemical engineering SPRONG-group in the Netherlands. We can then meaningfully contribute to further integrate the (inter)national research ecosystem to valorise innovative chemical processes for the KIA Climate and Energy.