Background: Although principles of the health promoting school (HPS) approach are followed worldwide, differences between countries in the implementation are reported. The aim of the current study was (1) to examine the implementation of the HPS approach in European countries in terms of different implementation indicators, that is, percentage of schools implementing the HPS approach, implementation of core components, and positioning on so‐called HPS‐related spectra, (2) to explore patterns of consistency between the implementation indicators across countries, and (3) to examine perceived barriers and facilitators to the implementation of the HPS approach across countries. Methods: This study analyzed data from a survey that was part of the Schools for Health in Europe network's Monitoring Task 2020. The survey was completed by HPS representatives of 24 network member countries. Results: Large variations exist in (the influencing factors for) the implementation of the HPS approach in European countries. Observed patterns show that countries with higher percentages of schools implementing the HPS approach also score higher on the implementation of the core components and, in terms of spectra, more toward implementing multiple HPS core components, add‐in strategies, action‐oriented research and national‐level driven dissemination. In each country a unique mix of barriers and facilitators was observed. Conclusion: Countries committed to implementing the HPS approach in as many schools as possible also seem to pay attention to the quality of implementation. For a complete and accurate measurement of implementation, the use of multiple implementation indicators is desirable.
DOCUMENT
BACKGROUND: Understanding of the consequences of a neuromuscular disease (NMD) can improve when a valid sample of disease-specific categories based on the International Classification of Functioning, Disabilities, and Health (ICF) is available.OBJECTIVE: To examine the content validity of the initial ICF Core Set for neuromuscular diseases (NMDs). The initial ICF Core Set was developed for three chronic neurological diseases.DESIGN: A qualitative method.METHODS: To examine the content validity of the initial ICF Core Set for NMD, concepts in established disease-specific health-related Quality of Life Questionnaires (HRQOL) were compared with ICF categories. Next, the selected ICF categories were linked to the ICF categories in the initial ICF Core Set.RESULTS: All concepts in the HRQOL questionnaires, except one body function concept, were covered by the initial ICF Core Set. However, the NMD Core Set reflects a broader scope concerning health problems than the concepts in the HRQOL questionnaires do, especially concerning the "Participation" and "Environmental Factors" components.CONCLUSION: The NMD Core Set, as well as a measurement based on this Core Set, can contribute to a better understanding of the consequences of NMDs and can also serve as a basis for clinical practice, research, social security systems, and educational programs.CLINICAL REHABILITATION IMPACT: The newly developed NMD Core Set can be a basis for enhancing the development of rehabilitation interventions and improving overall health care for patients with a NMD.
LINK
Background: Clinicians are currently challenged to support older adults to maintain a certain level of Functional Independence (FI). FI is defined as "functioning physically safely and independent from another person, within one's own context". A Core Outcome Set was developed to measure FI. The purpose of this study was to assess discriminative validity of the Core Outcome Set FI (COSFI) in a population of Dutch older adults (≥ 65 years) with different levels of FI. Secondary objective was to assess to what extent the underlying domains 'coping', 'empowerment' and 'health literacy' contribute to the COSFI in addition to the domain 'physical capacity'. Methods: A population of 200 community-dwelling older adults and older adults living in residential care facilities were evaluated by the COSFI. The COSFI contains measurements on the four domains of FI: physical capacity, coping, empowerment and health literacy. In line with the COSMIN Study Design checklist for Patient-reported outcome measurement instruments, predefined hypotheses regarding prediction accuracy and differences between three subgroups of FI were tested. Testing included ordinal logistic regression analysis, with main outcome prediction accuracy of the COSFI on a proxy indicator for FI. Results: Overall, the prediction accuracy of the COSFI was 68%. For older adults living at home and depending on help in (i)ADL, prediction accuracy was 58%. 60% of the preset hypotheses were confirmed. Only physical capacity measured with Short Physical Performance Battery was significantly associated with group membership. Adding health literacy with coping or empowerment to a model with physical capacity improved the model significantly (p < 0.01). Conclusions: The current composition of the COSFI, did not yet meet the COSMIN criteria for discriminative validity. However, with some adjustments, the COSFI potentially becomes a valuable instrument for clinical practice. Context-related factors, like the presence of a spouse, also may be a determining factor in this population. It is recommended to include context-related factors in further research on determining FI in subgroups of older people.
DOCUMENT
The growing demand for both retrofitting and refitting, driven by an aging global fleet and decarbonization efforts, including the need to accommodate alternative fuels such as LNG, methanol, and ammonia, offers opportunities for sustainability. However, they also pose challenges, such as emissions generated during these processes and the environmental impacts associated with the disposal of old components. The region Rotterdam and Drechtsteden form a unique Dutch maritime ecosystem of port logistics, shipbuilding, offshore operations, and innovation facilities, supported by Europe’s largest port and world-class infrastructure connecting global trade routes. The Netherlands’ maritime sector, including the sector concentrated in Zuid-Holland, is facing competition from subsidized Asian companies, leading to a steep decline in Europe’s shipbuilding market share from 45% in the 1980s to just 4% in 2023. Nonetheless, the shift toward climate-neutral ships presents economic opportunities for Dutch maritime companies. Thus, developing CE approaches to refitting is essential for promoting sustainability and addressing the pressing environmental and competitive challenges facing the sector and has led companies in the sector to establish the Open Joint Industry Project (OJIP) called Circolab of which this PD forms the core.
KnowledgeFlows in Marine Spatial Planning - Sharing Innovation in Higher Education(KnowledgeFlows) aims at further enforcing the European higher education community to meet the growing demands for knowledge, skills and innovation within the still emerging field of marine or maritime spatial planning (MSP).Marine Spatial Planning (MSP) is an emerging governmental approach towards a more effective use of the sea. MSP is of great interest in Europe and can be considered a societal process to balance conflicting interests of maritime stakeholders and the marine environment. Many different activities take place at sea, ranging from shipping, fisheries, to offshore wind energy activities. Simultaneously, new and evolving policies focus on strategies to integrate different marine demands in space and resources. MSP is now legally binding in the EU and is much needed approach to manage and organize the use of the sea, while also protecting the environment.KnowledgeFlows will contribute to the development of new innovative approaches to higher education and training on MSP by means of problem-based learning schemes, transdisciplinary collaboration, and advanced e-learning concepts. KnowledgeFlows builds on results from former project outputs (Erasmus+ Strategic Partnership for Marine Spatial Planning SP-MSP), such as the online learning platform MSP Education Arena (https://www.sp-msp.uol.de).The strategic partnership consists of a transnational network of experts both in research and in practice based in the north Atlantic, Baltic Sea and North Sea Regions including Aalborg University (DK, lead partner), The University of Oldenburg (D), the University of Liverpool (U.K.), the University of Nantes (F), the Leibniz Institute for Baltic Sea Research (D), the Breda University of Applied Sciences (NL), University of Ulster (U.K.), and the Finnish Environment Institute (FI). Gothenburg University, also being a higher education organisation, will be associated partner.Furthermore, three international organisations, the Marine Spatial Planning Research Network, the Baltic inter-governmental VASAB and the pan-Nordic Nordregio will be involved in the partnership as associated organisations deeply rooted in the MSP community of practice.The further improvement of curricula, exchange of knowledge and experts, and transparency and recognition of learning outcomes to reach higher qualifications in MSP are key components of KnowledgeFlows. A mutual learning environment for MSP higher education will enable problem-driven innovation among students and their educators from research and governance also involving stakeholders. Related activities on intellectual outputs, multiplier events and lecturing will be carried out by all participating organisations.The intellectual outputs are related to three major contributions to the European higher education landscape:1) an advanced level international topical MSP course (Step-up MSP)2) digital learning facilities and tools (MSP Education Arena)3) designing problem-based learning in MSP (MSP directory)The advanced level inter-institutional topical MSP course will include different teaching and training activities within a problem-based learning environment. Digital learning facilities enabling communication and training will include a further enrichment of the MSP Education Arena platform for students, practitioners and lecturers for including modules forcollaborate learning activities, documentation and dissemination, mobilisation/recruitment, thesis opportunities, placements/internships. Designing problem-based learning in MSP will include topics as; the design of didactics and methods; guidance for lecturers, supervisors and students; evaluation and quality assurance; assessment.Five multiplier events back to back or as part of conferences within the MSP community will be organised to mainstream the outputs and innovative MSP didactics among other universities and institutions.Different teaching and training activities feeds into the intellectual output activities, which will include serious gaming sessions (MSP Challenge (http://www.mspchallenge.info/) and others), workshops, excursions, courses/classes as well as a conference with a specific focus on facilitating the exchange of innovative ideas and approaches among students at bachelor´s, master´s and doctoral level and the MSP community of practice.Project management meetings (twice a year) will assure coherence in project planning and implementation. As the core focus of the strategic partnership is on collaboration, mutual learning, and innovation among educators, students, and practitioners in order to meet actual and future needs regarding knowledge exchange and training within the MSP community, the project will be designed to have long lasting effects.Results
In the quest of lowering atmospheric CO2 levels, Zero Emission Fuel (ZEF) B.V. is developing a small-scale microplant unit to produce a liquid fuel (methanol) directly from the air powered by only solar energy. By focusing on numbering up instead of scaling up, ZEF aims to shorten the development cycle of novel chemical processes and products. Within the microplant unit of ZEF, the core process that captures CO2 directly from the atmosphere resembles existing processes that capture CO2 from smokestacks. Therefore, it also inherits the existing challenge of sorbent degradation and short lifetime of chemicals and components: metal inside the process (in pipe, pump, heat exchanger, etc.) act as a catalyst for the lifetime-inhibiting oxidative degradation. A possible solution that could solve the degradation issues is the avoidance of metals altogether, in the entire process. In this project, a consortium of both industry and academic partners will kick off a new development roadmap that scouts, develops, tests and deploys new non-metal materials for CO2 capture processes. The small scale of the ZEF-process allows for fast innovation cycles through an iterative approach. The second industrial partner, Promolding B.V., provides a vast experience in the prototyping and application of novel polymers. The groups of TUD (sustainable Design Engineering at Industrial Design Engineering faculty together with Materials Science and Engineering at 3mE faculty) unlock deep understanding of materials and knowledge how to select, tweak or design novel composite materials until the necessary properties have been found. After this project, the development will continue to result in a chemical process that has longer lifetime, lower cost and is more sustainable. This will not only be at the benefit of the ZEF CO2 capture process, but also at the benefit of the chemical and materials industry as a whole.