Background: Remote coaching might be suited for providing information and support to patients with coronary artery disease (CAD) in the vulnerable phase between hospital discharge and the start of cardiac rehabilitation (CR).Objective: The goal of the research was to explore and summarize information and support needs of patients with CAD and develop an early remote coaching program providing tailored information and support.Methods: We used the intervention mapping approach to develop a remote coaching program. Three steps were completed in this study: (1) identification of information and support needs in patients with CAD, using an exploratory literature study and semistructured interviews, (2) definition of program objectives, and (3) selection of theory-based methods and practical intervention strategies.Results: Our exploratory literature study (n=38) and semistructured interviews (n=17) identified that after hospital discharge, patients with CAD report a need for tailored information and support about CAD itself and the specific treatment procedures, medication and side effects, physical activity, and psychological distress. Based on the preceding steps, we defined the following program objectives: (1) patients gain knowledge on how CAD and revascularization affect their bodies and health, (2) patients gain knowledge about medication and side effects and adhere to their treatment plan, (3) patients know which daily physical activities they can and can’t do safely after hospital discharge and are physically active, and (4) patients know the psychosocial consequences of CAD and know how to discriminate between harmful and harmless body signals. Based on the preceding steps, a remote coaching program was developed with the theory of health behavior change as a theoretical framework with behavioral counseling and video modeling as practical strategies for the program.Conclusions: This study shows that after (acute) cardiac hospitalization, patients are in need of information and support about CAD and revascularization, medication and side effects, physical activity, and psychological distress. In this study, we present the design of an early remote coaching program based on the needs of patients with CAD. The development of this program constitutes a step in the process of bridging the gap from hospital discharge to start of CR.
Background: For patients with coronary artery disease (CAD), smoking is an important risk factor for the recurrence of a cardiovascular event. Motivational interviewing (MI) may increase the motivation of the smokers to stop smoking. Data on MI for smoking cessation in patients with CAD are limited, and the active ingredients and working mechanisms of MI in smoking cessation are largely unknown. Therefore, this study was designed to explore active ingredients and working mechanisms of MI for smoking cessation in smokers with CAD, shortly after a cardiovascular event.Methods: We conducted a qualitative multiple case study of 24 patients with CAD who participated in a randomized trial on lifestyle change. One hundred and nine audio-recorded MI sessions were coded with a combination of the sequential code for observing process exchanges (SCOPE) and the motivational interviewing skill code (MISC). The analysis of the cases consisted of three phases: single case analysis, cross-case analysis, and cross-case synthesis. In a quantitative sequential analysis, we calculated the transition probabilities between the use of MI techniques by the coaches and the subsequent patient statements concerning smoking cessation.Results: In 12 cases, we observed ingredients that appeared to activate the mechanisms of change. Active ingredients were compositions of behaviors of the coaches (e.g., supporting self-efficacy and supporting autonomy) and patient reactions (e.g., in-depth self-exploration and change talk), interacting over large parts of an MI session. The composition of active ingredients differed among cases, as the patient process and the MI-coaching strategy differed. Particularly, change talk and self-efficacy appeared to stimulate the mechanisms of change “arguing oneself into change” and “increasing self-efficacy/confidence.”Conclusion: Harnessing active ingredients that target the mechanisms of change “increasing self-efficacy” and “arguing oneself into change” is a good MI strategy for smoking cessation, because it addresses the ambivalence of a patient toward his/her ability to quit, while, after the actual cessation, maintaining the feeling of urgency to persist in not smoking in the patient.
MULTIFILE
Background A high sedentary time is associated with increased mortality risk. Previous studies indicate that replacement of sedentary time with light- and moderate-to-vigorous physical activity attenuates the risk for adverse outcomes and improves cardiovascular risk factors. Patients with cardiovascular disease are more sedentary compared to the general population, while daily time spent sedentary remains high following contemporary cardiac rehabilitation programmes. This clinical trial investigated the effectiveness of a sedentary behaviour intervention as a personalised secondary prevention strategy (SIT LESS) on changes in sedentary time among patients with coronary artery disease participating in cardiac rehabilitation. Methods Patients were randomised to usual care (n = 104) or SIT LESS (n = 108). Both groups received a comprehensive 12-week centre-based cardiac rehabilitation programme with face-to-face consultations and supervised exercise sessions, whereas SIT LESS participants additionally received a 12-week, nurse-delivered, hybrid behaviour change intervention in combination with a pocket-worn activity tracker connected to a smartphone application to continuously monitor sedentary time. Primary outcome was the change in device-based sedentary time between pre- to post-rehabilitation. Changes in sedentary time characteristics (prevalence of prolonged sedentary bouts and proportion of patients with sedentary time ≥ 9.5 h/day); time spent in light-intensity and moderate-to-vigorous physical activity; step count; quality of life; competencies for self-management; and cardiovascular risk score were assessed as secondary outcomes. Results Patients (77% male) were 63 ± 10 years and primarily diagnosed with myocardial infarction (78%). Sedentary time decreased in SIT LESS (− 1.6 [− 2.1 to − 1.1] hours/day) and controls (− 1.2 [ ─1.7 to − 0.8]), but between group differences did not reach statistical significance (─0.4 [─1.0 to 0.3]) hours/day). The post-rehabilitation proportion of patients with a sedentary time above the upper limit of normal (≥ 9.5 h/day) was significantly lower in SIT LESS versus controls (48% versus 72%, baseline-adjusted odds-ratio 0.4 (0.2–0.8)). No differences were observed in the other predefined secondary outcomes. Conclusions Among patients with coronary artery disease participating in cardiac rehabilitation, SIT LESS did not induce significantly greater reductions in sedentary time compared to controls, but delivery was feasible and a reduced odds of a sedentary time ≥ 9.5 h/day was observed.
MULTIFILE