Intention of healthcare providers to use video-communication in terminal care: a cross-sectional study. Richard M. H. Evering, Marloes G. Postel, Harmieke van Os-Medendorp, Marloes Bults and Marjolein E. M. den Ouden BMC Palliative Care volume 21, Article number: 213 (2022) Cite this articleAbstractBackgroundInterdisciplinary collaboration between healthcare providers with regard to consultation, transfer and advice in terminal care is both important and challenging. The use of video communication in terminal care is low while in first-line healthcare it has the potential to improve quality of care, as it allows healthcare providers to assess the clinical situation in real time and determine collectively what care is needed. The aim of the present study is to explore the intention to use video communication by healthcare providers in interprofessional terminal care and predictors herein.MethodsIn this cross-sectional study, an online survey was used to explore the intention to use video communication. The survey was sent to first-line healthcare providers involved in terminal care (at home, in hospices and/ or nursing homes) and consisted of 39 questions regarding demographics, experience with video communication and constructs of intention to use (i.e. Outcome expectancy, Effort expectancy, Attitude, Social influence, Facilitating conditions, Anxiety, Self-efficacy and Personal innovativeness) based on the Unified Theory of Acceptance and Use of Technology and Diffusion of Innovation Theory. Descriptive statistics were used to analyze demographics and experiences with video communication. A multiple linear regression analysis was performed to give insight in the intention to use video communication and predictors herein.Results90 respondents were included in the analysis.65 (72%) respondents had experience with video communication within their profession, although only 15 respondents (17%) used it in terminal care. In general, healthcare providers intended to use video communication in terminal care (Mean (M) = 3.6; Standard Deviation (SD) = .88). The regression model was significant and explained 44% of the variance in intention to use video communication, with ‘Outcome expectancy’ and ‘Social influence’ as significant predictors.ConclusionsHealthcare providers have in general the intention to use video communication in interprofessional terminal care. However, their actual use in terminal care is low. ‘Outcome expectancy’ and ‘Social influence’ seem to be important predictors for intention to use video communication. This implicates the importance of informing healthcare providers, and their colleagues and significant others, about the usefulness and efficiency of video communication.
MULTIFILE
Seismic risk assessment of two real RC multi-story buildings, located on similar soil profile in Kocaeli, is conducted in respect to code-based linear and nonlinear approaches, as well as to P25-v2 Method, a recently suggested method for risk evaluation and preliminary assessment of existing buildings against life-loss. Twenty-five different parameters and seven different collapse criteria are taken into consideration in the suggested P25-v2 Method, including soil and topographic conditions, earthquake demand, various structural irregularities, material and geometrical properties, and location of the buildings. After summarizing the different methodologies and describing the case study buildings, 3D linear-elastic and static nonlinear analyses are performed in parallel to the application of the P25 Method-v2. One of the two case study buildings totally collapsed during 1999 Kocaeli Earthquake, while the other survived with negligible damage, noting that both had legal construction and occupation permissions. SAP2000 and SeismoStruct software packages have been utilised for the analysis procedure to find out the damage states of the structural members at critical stories and to determine the performance levels of the case study buildings. The code-based performance levels and the final performance scores obtained by the preliminary assessment technique are compared in order to underline the existence of the correlation between the detailed procedure and the suggested preliminary assessment technique with the real damage state. Consequently, structural inadequacies, weak points of the buildings and failure reasons are also discussed in this paper.
LINK
Restoration of walking capacity, as reflected by walking speed and walking distance, is a primary goal after stroke. Peak aerobic capacity (peak oxygen consumption [V̇O2peak]) is suggested to be correlated with walking capacity after stroke. Although the strength of this correlation is unclear, physical therapy programs often target walking capacity by means of aerobic training. Purpose The purpose of this systematic review was to summarize the available evidence on the correlation between V̇O2peak and walking capacity. Data Sources The databases MEDLINE, CINAHL, EMBASE, Cochrane Library, and SPORTDiscus were searched up to May 2014. Study Selection Cross-sectional studies reporting correlation coefficients between V̇O2peak and walking capacity in stroke were included, along with longitudinal studies reporting these correlation coefficients at baseline. Data Extraction The methodological quality of the studies was assessed using a checklist of 27 items for observational research. Information on study design, stroke severity and recovery, and assessments and outcome of V̇O2peak and walking capacity, as well as the reported correlation coefficients, were extracted. Data Synthesis Thirteen studies involving 454 participants were included. Meta-analyses showed combined correlation coefficients (rɱ) for V̇O2peak and walking speed and for V̇O2peak and walking distance of .42 (95% credibility interval=.31, .54) and .52 (95% credibility interval=.42, .62), respectively. Limitations The studies included in the present review had small sample sizes and low methodological quality. Clinical and methodological diversity challenged the comparability of the included studies, despite statistical homogeneity. Relevant data of 3 studies could not be retrieved. Conclusions The strength of the correlation of V̇O2peak with walking speed was low and moderate for V̇O2peak and walking distance, respectively, indicating that other factors, besides V̇O2peak, determine walking capacity after stroke.
LINK
Dit project richt zich op de ontwikkeling van de biotechnologische en chemische procesvoering om op basis van mycelium een alternatief voor leer te produceren. In vergelijking met leer is het voordeel van mycelium dat geen runderen nodig zijn, de productie kan plaatsvinden onder industriële condities en met gebruik van reststromen, de CO2 uitstoot alsook hoeveelheid afval verlaagd wordt, en het gebruik van toxische stoffen zoals chroom wordt vervangen door biobased alternatieven. In het project zullen de procescondities worden bepaald die leiden tot de vorming van optimaal mycelium. Daartoe zullen twee verschillende schimmels worden gekweekt in bioreactoren bij de Hogeschool Arnhem Nijmegen (HAN), waarbij specifiek de effecten van de procescondities (temperatuur, pH, shear, beluchting) en de samenstelling van het kweekmedium op groei van het mycelium en materiaal eigenschappen zullen worden onderzocht. De meest optimale condities zullen vervolgens worden opgeschaald. Op het op deze wijze verkregen materiaal zal Mylium BV een aantal nabehandelingsstappen uitvoeren om de sterkte, elasticiteit, en duurzaamheid van het product te vergroten. Daartoe worden biobased plasticizers, cross-linkers en/of flexibility agents gebruikt. Het resulterende eindproduct zal middels specifiek fysieke testen vergeleken worden met leer alsook worden voorgelegd aan mogelijke klanten. Indien beide resultaten positief zijn kan het betreffende proces na het project verder worden opgeschaald voor toepassing naar de markt.
Paper sludge contains papermaking mineral additives and fibers, which could be reused or recycled, thus enhancing the circularity. One of the promising technologies is the fast pyrolysis of paper sludge, which is capable of recovering > 99 wt.% of the fine minerals in the paper sludge and also affording a bio-liquid. The fine minerals (e.g., ‘circular’ CaCO3) can be reused as filler in consumer products thereby reducing the required primary resources. However, the bio-liquid has a lower quality compared to fossil fuels, and only a limited application, e.g., for heat generation, has been applied. This could be significantly improved by catalytic upgrading of the fast pyrolysis vapor, known as an ex-situ catalytic pyrolysis approach. We have recently found that a high-quality bio-oil (mainly ‘bio-based’ paraffins and low-molecular-weight aromatics, carbon yield of 21%, and HHV of 41.1 MJ kg-1) was produced (Chem. Eng. J., 420 (2021), 129714). Nevertheless, catalyst deactivation occurred after a few hours’ of reaction. As such, catalyst stability and regenerability are of research interest and also of high relevance for industrial implementation. This project aims to study the potential of the add-on catalytic upgrading step to the industrial fast pyrolysis of paper sludge process. One important performance metric for sustainable catalysis in the industry is the level of catalyst consumption (kgcat tprod-1) for catalytic pyrolysis of paper sludge. Another important research topic is to establish the correlation between yield and selectivity of the bio-chemicals and the catalyst characteristics. For this, different types of catalysts (e.g., FCC-type E-Cat) will be tested and several reaction-regeneration cycles will be performed. These studies will determine under which conditions catalytic fast pyrolysis of paper sludge is technically and economically viable.
Resistance to damage, fracture and failure is critical for high performance polymers, especially so in safety applications where they protect equipment or human life. In this project we investigate the use of molecular mechanochemistry tools for the measurement and analysis of mechanical impact in high performance polymers and their composites. While typically performed in a laboratory setting, these measurements hold promise for studying damage in large scale realistic samples. For this we will to develop fluorescent imaging techniques and chemistry, necessary to produce mechanoresponsive samples. This proposal will also draw correlations between imaging and mechanical testing, which can ultimately allow us to study realistic samples and recover the history of the impact they have sustained during operation.