PURPOSE: We investigated changes in ARDS severity and associations with outcome in COVID-19 ARDS patients.METHODS: We compared outcomes in patients with ARDS classified as 'mild', 'moderate' or 'severe' at calendar day 1, and after reclassification at calendar day 2. The primary endpoint was 28-day mortality. We also identified which ventilatory parameters had an association with presence of severe ARDS at day 2. We repeated the analysis for reclassification at calendar day 4.RESULTS: Of 895 patients, 8.5%, 60.1% and 31.4% had mild, moderate and severe ARDS at day 1. These proportions were 13.5%, 72.6% and 13.9% at day 2. 28-day mortality was 25.3%, 31.3% and 32.0% in patients with mild, moderate and severe ARDS at day 1 (p = 0.537), compared to 28.6%, 29.2% and 44.3% in patients reclassified at day 2 (p = 0.005). No ventilatory parameter had an independent association with presence of severe ARDS at day 2. Findings were not different reclassifying at day 4.CONCLUSIONS: In this cohort of COVID-19 patients, ARDS severity and mortality between severity classes changed substantially over the first 4 days of ventilation. These findings are important, as reclassification could help identify target patients that may benefit from alternative approaches.
MULTIFILE
BACKGROUND: Estimates for dead space ventilation have been shown to be independently associated with an increased risk of mortality in the acute respiratory distress syndrome and small case series of COVID-19-related ARDS.METHODS: Secondary analysis from the PRoVENT-COVID study. The PRoVENT-COVID is a national, multicenter, retrospective observational study done at 22 intensive care units in the Netherlands. Consecutive patients aged at least 18 years were eligible for participation if they had received invasive ventilation for COVID-19 at a participating ICU during the first month of the national outbreak in the Netherlands. The aim was to quantify the dynamics and determine the prognostic value of surrogate markers of wasted ventilation in patients with COVID-19-related ARDS.RESULTS: A total of 927 consecutive patients admitted with COVID-19-related ARDS were included in this study. Estimations of wasted ventilation such as the estimated dead space fraction (by Harris-Benedict and direct method) and ventilatory ratio were significantly higher in non-survivors than survivors at baseline and during the following days of mechanical ventilation (p < 0.001). The end-tidal-to-arterial PCO2 ratio was lower in non-survivors than in survivors (p < 0.001). As ARDS severity increased, mortality increased with successive tertiles of dead space fraction by Harris-Benedict and by direct estimation, and with an increase in the VR. The same trend was observed with decreased levels in the tertiles for the end-tidal-to-arterial PCO2 ratio. After adjustment for a base risk model that included chronic comorbidities and ventilation- and oxygenation-parameters, none of the dead space estimates measured at the start of ventilation or the following days were significantly associated with 28-day mortality.CONCLUSIONS: There is significant impairment of ventilation in the early course of COVID-19-related ARDS but quantification of this impairment does not add prognostic information when added to a baseline risk model.TRIAL REGISTRATION: ISRCTN04346342. Registered 15 April 2020. Retrospectively registered.
MULTIFILE
BACKGROUND: The intensity of ventilation, reflected by driving pressure (ΔP) and mechanical power (MP), has an association with outcome in invasively ventilated patients with or without acute respiratory distress syndrome (ARDS). It is uncertain if a similar association exists in coronavirus disease 2019 (COVID-19) patients with acute respiratory failure.METHODS: We aimed to investigate the impact of intensity of ventilation on patient outcome. The PRoVENT-COVID study is a national multicenter observational study in COVID-19 patients receiving invasive ventilation. Ventilator parameters were collected a fixed time points on the first calendar day of invasive ventilation. Mean dynamic ΔP and MP were calculated for individual patients at time points without evidence of spontaneous breathing. A Cox proportional hazard model, and a double stratification analysis adjusted for confounders were used to estimate the independent associations of ΔP and MP with outcome. The primary endpoint was 28-day mortality.RESULTS: In 825 patients included in this analysis, 28-day mortality was 27.5%. ΔP was not independently associated with mortality (HR 1.02 [95% confidence interval 0.88-1.18]; P = 0.750). MP, however, was independently associated with 28-day mortality (HR 1.17 [95% CI 1.01-1.36]; P = 0.031), and increasing quartiles of MP, stratified on comparable levels of ΔP, had higher risks of 28-day mortality (HR 1.15 [95% CI 1.01-1.30]; P = 0.028).CONCLUSIONS: In this cohort of critically ill invasively ventilated COVID-19 patients with acute respiratory failure, we show an independent association of MP, but not ΔP with 28-day mortality. MP could serve as one prognostic biomarker in addition to ΔP in these patients. Efforts aiming at limiting both ΔP and MP could translate in a better outcome. Trial registration Clinicaltrials.gov (study identifier NCT04346342).
DOCUMENT
PURPOSE: We investigated changes in ARDS severity and associations with outcome in COVID-19 ARDS patients.METHODS: We compared outcomes in patients with ARDS classified as 'mild', 'moderate' or 'severe' at calendar day 1, and after reclassification at calendar day 2. The primary endpoint was 28-day mortality. We also identified which ventilatory parameters had an association with presence of severe ARDS at day 2. We repeated the analysis for reclassification at calendar day 4.RESULTS: Of 895 patients, 8.5%, 60.1% and 31.4% had mild, moderate and severe ARDS at day 1. These proportions were 13.5%, 72.6% and 13.9% at day 2. 28-day mortality was 25.3%, 31.3% and 32.0% in patients with mild, moderate and severe ARDS at day 1 (p = 0.537), compared to 28.6%, 29.2% and 44.3% in patients reclassified at day 2 (p = 0.005). No ventilatory parameter had an independent association with presence of severe ARDS at day 2. Findings were not different reclassifying at day 4.CONCLUSIONS: In this cohort of COVID-19 patients, ARDS severity and mortality between severity classes changed substantially over the first 4 days of ventilation. These findings are important, as reclassification could help identify target patients that may benefit from alternative approaches.
DOCUMENT
Background: Estimates for dead space ventilation have been shown to be independently associated with an increased risk of mortality in the acute respiratory distress syndrome and small case series of COVID-19-related ARDS. Methods: Secondary analysis from the PRoVENT-COVID study. The PRoVENT-COVID is a national, multicenter, retrospective observational study done at 22 intensive care units in the Netherlands. Consecutive patients aged at least 18 years were eligible for participation if they had received invasive ventilation for COVID-19 at a participating ICU during the first month of the national outbreak in the Netherlands. The aim was to quantify the dynamics and determine the prognostic value of surrogate markers of wasted ventilation in patients with COVID-19-related ARDS. Results: A total of 927 consecutive patients admitted with COVID-19-related ARDS were included in this study. Estimations of wasted ventilation such as the estimated dead space fraction (by Harris–Benedict and direct method) and ventilatory ratio were significantly higher in non-survivors than survivors at baseline and during the following days of mechanical ventilation (p < 0.001). The end-tidal-to-arterial PCO2 ratio was lower in non-survivors than in survivors (p < 0.001). As ARDS severity increased, mortality increased with successive tertiles of dead space fraction by Harris–Benedict and by direct estimation, and with an increase in the VR. The same trend was observed with decreased levels in the tertiles for the end-tidal-to-arterial PCO2 ratio. After adjustment for a base risk model that included chronic comorbidities and ventilation- and oxygenation-parameters, none of the dead space estimates measured at the start of ventilation or the following days were significantly associated with 28-day mortality. Conclusions: There is significant impairment of ventilation in the early course of COVID-19-related ARDS but quantification of this impairment does not add prognostic information when added to a baseline risk model. Trial registration: ISRCTN04346342. Registered 15 April 2020. Retrospectively registered.
DOCUMENT
Purpose: Lactate is an established prognosticator in critical care. However, there still is insufficient evidence about its role in predicting outcome in COVID-19. This is of particular concern in older patients who have been mostly affected during the initial surge in 2020. Methods: This prospective international observation study (The COVIP study) recruited patients aged 70 years or older (ClinicalTrials.gov ID: NCT04321265) admitted to an intensive care unit (ICU) with COVID-19 disease from March 2020 to February 2021. In addition to serial lactate values (arterial blood gas analysis), we recorded several parameters, including SOFA score, ICU procedures, limitation of care, ICU- and 3-month mortality. A lactate concentration ≥ 2.0 mmol/L on the day of ICU admission (baseline) was defined as abnormal. The primary outcome was ICU-mortality. The secondary outcomes 30-day and 3-month mortality. Results: In total, data from 2860 patients were analyzed. In most patients (68%), serum lactate was lower than 2 mmol/L. Elevated baseline serum lactate was associated with significantly higher ICU- and 3-month mortality (53% vs. 43%, and 71% vs. 57%, respectively, p < 0.001). In the multivariable analysis, the maximum lactate concentration on day 1 was independently associated with ICU mortality (aOR 1.06 95% CI 1.02–1.11; p = 0.007), 30-day mortality (aOR 1.07 95% CI 1.02–1.13; p = 0.005) and 3-month mortality (aOR 1.15 95% CI 1.08–1.24; p < 0.001) after adjustment for age, gender, SOFA score, and frailty. In 826 patients with baseline lactate ≥ 2 mmol/L sufficient data to calculate the difference between maximal levels on days 1 and 2 (∆ serum lactate) were available. A decreasing lactate concentration over time was inversely associated with ICU mortality after multivariate adjustment for SOFA score, age, Clinical Frailty Scale, and gender (aOR 0.60 95% CI 0.42–0.85; p = 0.004). Conclusion: In critically ill old intensive care patients suffering from COVID-19, lactate and its kinetics are valuable tools for outcome prediction. Trial registration number: NCT04321265.
DOCUMENT
BACKGROUND: The primary aim of this study was to assess the outcome of elderly intensive care unit (ICU) patients treated during the spring and autumn COVID-19 surges in Europe.METHODS: This was a prospective European observational study (the COVIP study) in ICU patients aged 70 years and older admitted with COVID-19 disease from March to December 2020 to 159 ICUs in 14 European countries. An electronic database was used to register a number of parameters including: SOFA score, Clinical Frailty Scale, co-morbidities, usual ICU procedures and survival at 90 days. The study was registered at ClinicalTrials.gov (NCT04321265).RESULTS: In total, 2625 patients were included, 1327 from the first and 1298 from the second surge. Median age was 74 and 75 years in surge 1 and 2, respectively. SOFA score was higher in the first surge (median 6 versus 5, p < 0.0001). The PaO2/FiO2 ratio at admission was higher during surge 1, and more patients received invasive mechanical ventilation (78% versus 68%, p < 0.0001). During the first 15 days of treatment, survival was similar during the first and the second surge. Survival was lower in the second surge after day 15 and differed after 30 days (57% vs 50%) as well as after 90 days (51% vs 40%).CONCLUSION: An unexpected, but significant, decrease in 30-day and 90-day survival was observed during the second surge in our cohort of elderly ICU patients. The reason for this is unclear. Our main concern is whether the widespread changes in practice and treatment of COVID-19 between the two surges have contributed to this increased mortality in elderly patients. Further studies are urgently warranted to provide more evidence for current practice in elderly patients.TRIAL REGISTRATION NUMBER: NCT04321265 , registered March 19th, 2020.
MULTIFILE
We describe the incidence and practice of prone positioning and determined the association of use of prone positioning with outcomes in invasively ventilated patients with acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19) in a national, multicenter observational study, performed at 22 intensive care units in the Netherlands. Patients were categorized into 4 groups, based on indication for and actual use of prone positioning. The primary outcome was 28-day mortality. Secondary endpoints were 90-day mortality, and ICU and hospital length of stay. In 734 patients, prone positioning was indicated in 60%—the incidence of prone positioning was higher in patients with an indication than in patients without an indication for prone positioning (77 vs. 48%, p = 0.001). Patients were left in the prone position for median 15.0 (10.5–21.0) hours per full calendar day—the duration was longer in patients with an indication than in patients without an indication for prone positioning (16.0 (11.0–23.0) vs. 14.0 (10.0–19.0) hours, p < 0.001). Ventilator settings and ventilation parameters were not different between the four groups, except for FiO2 which was higher in patients having an indication for and actually receiving prone positioning. Our data showed no difference in mortality at day 28 between the 4 groups (HR no indication, no prone vs. no indication, prone vs. indication, no prone vs. indication, prone: 1.05 (0.76–1.45) vs. 0.88 (0.62–1.26) vs. 1.15 (0.80–1.54) vs. 0.96 (0.73–1.26) (p = 0.08)). Factors associated with the use of prone positioning were ARDS severity and FiO2. The findings of this study are that prone positioning is often used in COVID-19 patients, even in patients that have no indication for this intervention. Sessions of prone positioning lasted long. Use of prone positioning may affect outcomes.
DOCUMENT
Objective: We determined the prevalences of hyperoxemia and excessive oxygen use, and the epidemiology, ventilation characteristics and outcomes associated with hyperoxemia in invasively ventilated patients with coronavirus disease 2019 (COVID–19). Methods: Post hoc analysis of a national, multicentre, observational study in 22 ICUs. Patients were classified in the first two days of invasive ventilation as ‘hyperoxemic’ or ‘normoxemic’. The co–primary endpoints were prevalence of hyperoxemia (PaO2 > 90 mmHg) and prevalence of excessive oxygen use (FiO2 ≥ 60% while PaO2 > 90 mmHg or SpO2 > 92%). Secondary endpoints included ventilator settings and ventilation parameters, duration of ventilation, length of stay (LOS) in ICU and hospital, and mortality in ICU, hospital, and at day 28 and 90. We used propensity matching to control for observed confounding factors that may influence endpoints. Results: Of 851 COVID–19 patients, 225 (26.4%) were classified as hyperoxemic. Excessive oxygen use occurred in 385 (45.2%) patients. Acute respiratory distress syndrome (ARDS) severity was lowest in hyperoxemic patients. Hyperoxemic patients were ventilated with higher positive end–expiratory pressure (PEEP), while rescue therapies for hypoxemia were applied more often in normoxemic patients. Neither in the unmatched nor in the matched analysis were there differences between hyperoxemic and normoxemic patients with regard to any of the clinical outcomes. Conclusion: In this cohort of invasively ventilated COVID–19 patients, hyperoxemia occurred often and so did excessive oxygen use. The main differences between hyperoxemic and normoxemic patients were ARDS severity and use of PEEP. Clinical outcomes were not different between hyperoxemic and normoxemic patients.
DOCUMENT
BACKGROUND: The SpO2/FiO2 is a useful oxygenation parameter with prognostic capacity in patients with ARDS. We investigated the prognostic capacity of SpO2/FiO2 for mortality in patients with ARDS due to COVID-19.METHODS: This was a post-hoc analysis of a national multicenter cohort study in invasively ventilated patients with ARDS due to COVID-19. The primary endpoint was 28-day mortality.RESULTS: In 869 invasively ventilated patients, 28-day mortality was 30.1%. The SpO2/FiO2 on day 1 had no prognostic value. The SpO2/FiO2 on day 2 and day 3 had prognostic capacity for death, with the best cut-offs being 179 and 199, respectively. Both SpO2/FiO2 on day 2 (OR, 0.66 [95%-CI 0.46-0.96]) and on day 3 (OR, 0.70 [95%-CI 0.51-0.96]) were associated with 28-day mortality in a model corrected for age, pH, lactate levels and kidney dysfunction (AUROC 0.78 [0.76-0.79]). The measured PaO2/FiO2 and the PaO2/FiO2 calculated from SpO2/FiO2 were strongly correlated (Spearman's r = 0.79).CONCLUSIONS: In this cohort of patients with ARDS due to COVID-19, the SpO2/FiO2 on day 2 and day 3 are independently associated with and have prognostic capacity for 28-day mortality. The SpO2/FiO2 is a useful metric for risk stratification in invasively ventilated COVID-19 patients.
MULTIFILE