Abstract gepubliceerd in Elsevier: Introduction: Recent research has identified the issue of ‘dose creep’ in diagnostic radiography and claims it is due to the introduction of CR and DR technology. More recently radiographers have reported that they do not regularly manipulate exposure factors for different sized patients and rely on pre-set exposures. The aim of the study was to identify any variation in knowledge and radiographic practice across Europe when imaging the chest, abdomen and pelvis using digital imaging. Methods: A random selection of 50% of educational institutes (n ¼ 17) which were affiliated members of the European Federation of Radiographer Societies (EFRS) were contacted via their contact details supplied on the EFRS website. Each of these institutes identified appropriate radiographic staff in their clinical network to complete an online survey via SurveyMonkey. Data was collected on exposures used for 3 common x-ray examinations using CR/DR, range of equipment in use, staff educational training and awareness of DRL. Descriptive statistics were performed with the aid of Excel and SPSS version 21. Results: A response rate of 70% was achieved from the affiliated educational members of EFRS and a rate of 55% from the individual hospitals in 12 countries across Europe. Variation was identified in practice when imaging the chest, abdomen and pelvis using both CR and DR digital systems. There is wide variation in radiographer training/education across countries.
Key takeaways from the project underscore the importance of fostering long-term collaborations between technical experts, communities, and institutional partners. By integrating technical innovation with human-centred design, the SUSTENANCE project has not only advanced renewable energy adoption but also established a framework for empowering communities to actively participate in sustainable energy transitions. Moving forward, the lessons learned, and solutions developed provide a solid foundation for addressing future challenges in energy system decarbonization and resilience.
MULTIFILE
A decade ago many gushed at the possibilities of 3D printers and other DIY tech. Today makers are increasingly shaking off their initial blind enthusiasm to numerically control everything, rediscovering an interest in sociocultural histories and futures and waking up to the environmental and economic implications of digital machines that transform materials. An accumulation of critique has collectively registered that no tool, service, or software is good, bad, or neutral—or even free for that matter. We’ve arrived at a crossroads, where a reflective pause coincides with new critical initiatives emerging across disciplines.What was making? What is making? What could making become? And what about unmaking? The Critical Makers Reader features an array of practitioners and scholars who address these questions. Together, they tackle issues of technological making and its intersections with (un)learning, art and design, institutionalization, social critique, community organizing, collaboration, activism, urban regeneration, social inequality, and the environmental crisis.
MULTIFILE
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
This PD project explores alternative approaches to audiovisual technologies in art and creative practices by reimagining and reinventing marginalized and decommodified devices through Media Archaeology, artistic experimentation, and hands-on technical reinvention. This research employs Media Archaeology to uncover “obsolete” yet artistically relevant technologies and hands-on technical reinvention to adapt these tools for contemporary creative practices. It seeks to develop experimental self-built devices that critically engage with media materiality, exploring alternative aesthetic possibilities through practice-based investigations into the cultural and historical dimensions of media technologies. These developments provide artists with new creative possibilities beyond mainstream commercial standardized tools and infrastructures. A key component of this project is collaborative innovation with artist-run analog film communities, such as Filmwerkplaats. By fostering knowledge exchange and artistic experimentation, this research ensures that reinvented tools remain relevant to both analog film communities and contemporary media art practices. The intended outcomes directly benefit two key groups: • Artist-run film labs gain sustainable methods for evolving their practices, reducing dependence on scarce, out-of-production equipment. • Digital-native artists are introduced to alternative methods for engaging with analog processes and media materiality, expanding their creative toolkit. This collaboration also strengthens art and design education by embedding alternative technological perspectives and research methodologies into curricula, providing students and practitioners with resourceful, sustainable approaches to working with technology. It advocates for a more diverse educational paradigm that incorporates media-technological history and critical reflection on the ideologies of linear technological progress. Ultimately, this research fosters critical discourse on media culture, challenges the dominance of corporate proprietary systems, and promotes innovation, redefining the relationship between creativity and technology.
In societies where physical activity levels are declining, stimulating sports participation in youth is vital. While sports offer numerous benefits, injuries in youth are at an all-time high with potential long-term consequences. Particularly, women football's popularity surge has led to a rise in knee injuries, notably anterior cruciate ligament (ACL) injuries, with severe long-term effects. Urgent societal attention is warranted, supported by media coverage and calls for action by professional players. This project aims to evaluate the potential of novel artificial intelligence-based technology to enhance player monitoring for injury risk, and to integrate these monitoring pathways into regular training practice. Its success may pave the way for broader applications across different sports and injuries. Implementation of results from lab-based research into practice is hindered by the lack of skills and technology needed to perform the required measurements. There is a critical need for non-invasive systems used during regular training practice and allowing longitudinal monitoring. Markerless motion capture technology has recently been developed and has created new potential for field-based data collection in sport settings. This technology eliminates the need for marker/sensor placement on the participant and can be employed on-site, capturing movement patterns during training. Since a common AI algorithm for data processing is used, minimal technical knowledge by the operator is required. The experienced PLAYSAFE consortium will exploit this technology to monitor 300 young female football players over the course of 1 season. The successful implementation of non-invasive monitoring of football players’ movement patterns during regular practice is the primary objective of this project. In addition, the study will generate key insights into risk factors associated with ACL injury. Through this approach, PLAYSAFE aims to reduce the burden of ACL injuries in female football players.