Research-based teacher education can be understood in different ways: as a call to understand teacher education institutions as research institutions, as the ambition to educate student teachers to have an inquiring attitude, as the basing of teacher education curricula on the latest research, or as a combination of all three.In this chapter we reflect on a method of connecting research, curriculum development and practice in teacher education, presenting a case study of a conversational community of teacher educators and researchers. The aim of the conversational community was to understand the process of curriculum design in teacher education as an inspiring and practical combination of design research, self-study, collaborative action research and curriculum study by teacher educators. This process was supported by a conversational framework in which curriculum development was understood as an ongoing dialogue between vision, intentions, design and practice in the teacher education curriculum. Using the conversational framework in this single case study of a conversational community, we have tried to connect teacher education research, curriculum development and practice in a meaningful way.
Little has been published regarding the training of academic developers themselves to support internationalization of the curriculum (IoC) initiatives. However, higher education institutions around the globe are responding to strategic demands for IoC which prepare students as ‘world-ready’ graduates. We employed qualitative research synthesis to identify recent journal articles which consider current trends in academic development to support IoC. Despite their diversity, we found common themes in the five selected studies. Our discussion and recommendations weave these themes with Betty Leask’s five-stage model of the process of IoC and Cynthia Joseph’s call for a pedagogy of social justice. “This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal for Academic Development on 19/11/15, available online: https://doi.org/10.1080/1360144X.2019.1691559.
MULTIFILE
Engineering students have to learn to create robust solutions in professional contexts where new technologies emerge constantly and sometimes disrupt entire industries. The question rises if universities design curricula that enable engineering students to acquire these cognitive skills. The Cynefin Framework (Kurtz & Snowden, 2003; Snowden & Boone, 2007) can be used to typify four complexity contexts a system or organisation can be found in: chaos, complex, complicated and obvious.The Cynefin framework made it possible to create the research question for a case-study: To what extend does the Business Engineering curriculum enable bachelors to find business solutions in the complexity contexts of the Cynefin framework? The results show that 80% of the methods are suitable for complicated contexts and no distinction is made between contexts. This means students are taught to approach most contexts in the same way and are not made aware of differences between the contexts. Making sense of the methods in the curriculum with the Cynefin framework was insightful and suggestions for improvement and further research could be substantiated
Teachers have a crucial role in bringing about the extensive social changes that are needed in the building of a sustainable future. In the EduSTA project, we focus on sustainability competences of teachers. We strengthen the European dimension of teacher education via Digital Open Badges as means of performing, acknowledging, documenting, and transferring the competencies as micro-credentials. EduSTA starts by mapping the contextual possibilities and restrictions for transformative learning on sustainability and by operationalising skills. The development of competence-based learning modules and open digital badge-driven pathways will proceed hand in hand and will be realised as learning modules in the partnering Higher Education Institutes and badge applications open for all teachers in Europe.Societal Issue: Teachers’ capabilities to act as active facilitators of change in the ecological transition and to educate citizens and workforce to meet the future challenges is key to a profound transformation in the green transition.Teachers’ sustainability competences have been researched widely, but a gap remains between research and the teachers’ practise. There is a need to operationalise sustainability competences: to describe direct links with everyday tasks, such as curriculum development, pedagogical design, and assessment. This need calls for an urgent operationalisation of educators’ sustainability competences – to support the goals with sustainability actions and to transfer this understanding to their students.Benefit to society: EduSTA builds a community, “Academy of Educators for Sustainable Future”, and creates open digital badge-driven learning pathways for teachers’ sustainability competences supported by multimodal learning modules. The aim is to achieve close cooperation with training schools to actively engage in-service teachers.Our consortium is a catalyst for leading and empowering profound change in the present and for the future to educate teachers ready to meet the challenges and act as active change agents for sustainable future. Emphasizing teachers’ essential role as a part of the green transition also adds to the attractiveness of teachers’ work.
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.