The growing sophistication, frequency and severity of cyberattacks targeting all sectors highlight their inevitability and the impossibility of completely protecting the integrity of critical computer systems. In this context, cyber-resilience offers an attractive alternative to the existing cybersecurity paradigm. We define cyber-resilience as the capacity to withstand, recover from and adapt to the external shocks caused by cyber-risks. This article seeks to provide a broader organizational understanding of cyber-resilience and the tensions associated with its implementation. We apply Weick's (1995) sensemaking framework to examine four foundational tensions of cyber-resilience: a definitional tension, an environmental tension, an internal tension, and a regulatory tension. We then document how these tensions are embedded in cyber-resilience practices at the preparatory, response and adaptive stages. We rely on qualitative data from a sample of 58 cybersecurity professionals to uncover these tensions and how they reverberate across cyber-resilience practices.
DOCUMENT
In case of a major cyber incident, organizations usually rely on external providers of Cyber Incident Response (CIR) services. CIR consultants operate in a dynamic and constantly changing environment in which they must actively engage in information management and problem solving while adapting to complex circumstances. In this challenging environment CIR consultants need to make critical decisions about what to advise clients that are impacted by a major cyber incident. Despite its relevance, CIR decision making is an understudied topic. The objective of this preliminary investigation is therefore to understand what decision-making strategies experienced CIR consultants use during challenging incidents and to offer suggestions for training and decision-aiding. A general understanding of operational decision making under pressure, uncertainty, and high stakes was established by reviewing the body of knowledge known as Naturalistic Decision Making (NDM). The general conclusion of NDM research is that experts usually make adequate decisions based on (fast) recognition of the situation and applying the most obvious (default) response pattern that has worked in similar situations in the past. In exceptional situations, however, this way of recognition-primed decision-making results in suboptimal decisions as experts are likely to miss conflicting cues once the situation is quickly recognized under pressure. Understanding the default response pattern and the rare occasions in which this response pattern could be ineffective is therefore key for improving and aiding cyber incident response decision making. Therefore, we interviewed six experienced CIR consultants and used the critical decision method (CDM) to learn how they made decisions under challenging conditions. The main conclusion is that the default response pattern for CIR consultants during cyber breaches is to reduce uncertainty as much as possible by gathering and investigating data and thus delay decision making about eradication until the investigation is completed. According to the respondents, this strategy usually works well and provides the most assurance that the threat actor can be completely removed from the network. However, the majority of respondents could recall at least one case in which this strategy (in hindsight) resulted in unnecessary theft of data or damage. Interestingly, this finding is strikingly different from other operational decision-making domains such as the military, police and fire service in which there is a general tendency to act rapidly instead of searching for more information. The main advice is that training and decision aiding of (novice) cyber incident responders should be aimed at the following: (a) make cyber incident responders aware of how recognition-primed decision making works; (b) discuss the default response strategy that typically works well in several scenarios; (c) explain the exception and how the exception can be recognized; (d) provide alternative response strategies that work better in exceptional situations.
DOCUMENT
Attack surfaces are increasing as products are increasingly more connected. This has been acknowledged by the European Commission in their Europe: fit for the digital age strategy and in recent legislative proposals. Most importantly, the proposed Cyber Resilience Act (CRA) sets minimum cybersecurity requirements for products with digital elements. These requirements range from effective and regular tests to the dissemination of free security updates in case of a cybersecurity breach. This should ensure a base level of cybersecurity throughout the product’s lifetime. Unfortunately, there is a catch: not all products with digital elements fall within the scope of the proposed CRA. For instance, vehicles are not subject to the proposed Act. The exclusion of this category of products with digital elements seems to be based on the premise that ‘the sectoral rules achieve the same level of protection as the one provided for by this Regulation’ (recital 14). This contribution is challenging this premise, as it explores the level of cybersecurity as laid down in the proposed CRA and compares it to the level of cybersecurity ensured by the sectoral rules in vehicle regulation. Could this mean that your smartphone is going to be more cybersecure than your car?
MULTIFILE