In Groningen, the Netherlands, induced earthquakes occur in a relatively densely populated area, the so-called Groningen gas field. Many houses and other buildings have been facing damage, from minor cracks to severe damage. The gas extraction company (NAM, a joint venture of Shell and Exxon Mobil) is held responsible for the earthquakes and has a legal liability to compensate for the damage. In addition to damage, several houses in the area are thought to be unsafe (not allowing occupants to leave their houses alive in case of a major earthquake). Both NAM and the Dutch government play a crucial role in the gas problems; where NAM is responsible for damage, the government has to guarantee citizens’ safety. Government has given orders to develop a strengthening operation for thousands houses.For many inhabitants, the practice of damage repair and strengthening has not been very effective and satisfying. First, the system of damage compensation, is neither simple nor expeditious; many citizens experience long waiting times, arbitrariness in causality and damage judgements and, as a result, unfair treatments. Second, after plans had been launched to inspect and eventually strengthen thousands of houses, the Minister decided to gradually reduce gas extraction. Immediately after that, he also decided to pause the intended strengthening operation, leaving many inhabitants in uncertainty about the current safety of their houses. In short, Groningen citizens don’t feel taken seriously by NAM, government and executing agencies, they are dissatisfied with damage settlements and their confidence in private (oil/gas companies) and public parties (government) has reached an all-time low. This situation has turned out to be very obstinate and difficult to turn. Our statement is that the architecture of the damage and strengthening operation is based on a systematic flaw. Although several minor changes have been made in the damage settlement and strengthening system, they have been limited to executing agencies and are not substantial. Therefore it is argued that, unless this structural flaw is being solved, the Netherlands will stay confronted with Groningen citizens whose trust in government is a far cry and will eventually lead to feelings of alienation.
DOCUMENT
Risk assessments on trees in urban areas and roadside plantings have become common practice and a large body of information exists on qualitative aspects on the risks of tree failure. Quantitative analysis of financial damage due to tree failure is generally lacking. The objective of this paper is to determine the amount of tree failure related property damage and to derive possible trends in the number of cases and monetary claims and compensations. This paper presents the analysis of 1610 observations on urban tree failure in the Netherlands. The data originate from two different sources, i.e. jurisprudence (4% of the data) and 21 municipalities (96%). The data covers property damage in urban areas between the early sixties and 2010. Within municipalities, paid compensations due to tree failure are found to range from €0 to € 49,296 with an average of €2,244 per paid compensation. Results demonstrate a significant annual increase in tree failure as well as in paid compensations.
MULTIFILE
Out-of-plane (OOP) collapse is one of the most observed damage types in masonry structures during strong earthquakes. OOP strength of a masonry wall depends on several parameters such as the dimensions of the wall, vertical restoring force, boundary conditions and material properties, which are parameters creating complex kinematics during an earthquake. Testing of OOP response of a masonry wall is thus a challenging task, also because additional to the complexities mentioned, the seismic forces triggering OOP are caused by inertia of the wall itself, a phenomenon that needs dynamic testing. All these facts make shake table tests of masonry walls for capturing the OOP response extremely relevant. This paper presents shake table tests on a total of four wall specimens, two of which were reference walls and the other two were strengthened solid masonry walls. The tested walls built to represent the characteristics of Groningen houses built before the Second World War and also the historical masonry structures in the region. The strengthening methods applied are the deep-mounted carbon strips embedded in flexible epoxy and helical bars applied in mortar beds. The shake table tests presented here show that OOP specimens not including the additional masses imposed by the floors may oversee important kinematic response characteristics of the walls. Furthermore, tests have also shown that even serious cracks caused by OOP response close when the shaking stops, which causes damage on the walls and significant decrease in the stiffness, but they are extremely difficult to be caught by human inspection. This has consequences in terms of ongoing damage inspection and compensation efforts taking place in the Groningen gas field. The strengthening methods applied to the two specimens have shown clear improvement in strength, and a partial improvement in progression of damage.
DOCUMENT