This dissertation describes a research project about the communication between communication vulnerable people and health care professionals in long-term care settings. Communication vulnerable people experience functional communication difficulties in particular situations, due to medical conditions. They experience difficulties expressing themselves or understanding professionals, and/or professionals experience difficulties understanding these clients. Dialogue conversations between clients and professionals in healthcare, which for example concern health-related goals, activity and participation choices, diagnostics, treatment options, and treatment evaluation, are, however, crucial for successful client-centred care and shared decision making. Dialogue conversations facilitate essential exchanges between clients and healthcare professionals, and both clients and professionals should play a significant role in the conversation. It is unknown how communication vulnerable people and their healthcare professionals experience dialogue conversations and what can be done to support successful communication in these conversations. The aim of this research is to explore how communication vulnerable clients and professionals experience their communication in dialogue conversations in long-term care and how they can best be supported in improving their communication in these conversations.
DOCUMENT
Big data heeft niet alleen geleid tot uitdagende technische vraagstukken, ook gaat het gepaard met allerlei nieuwe ethische en morele kwesties. Om verantwoord met big data om te gaan, moet ook over deze kwesties worden nagedacht. Want slecht datagebruik kan nadelige gevolgen hebben voor grote groepen mensen en voor organisaties. In de slotaflevering van deze serie verkennen Klaas Jan Mollema en Niek van Antwerpen op een pragmatische manier de ethische kant van big data, zonder te blijven steken in de negatieve effecten ervan.
DOCUMENT
Data is widely recognized as a potent catalyst for advancing healthcare effectiveness, increasing worker satisfaction, and mitigating healthcarecosts. The ongoing digital transformation within the healthcare sector promises to usher in a new era of flexible patient care, seamless inter-provider communication, and data-informed healthcare practices through the application of data science. However, more often than not data lacks interoperability across different healthcare institutions andare not readily available for analysis. This inability to share data leads to a higher administrative burden for healthcare providers and introduces risks when data is missing or when delays occur. Moreover, medical researchers face similar challenges in accessing medical data due to thedifficulty of extracting data from applications, a lack of standardization, and the required data transformations before it can be used for analysis. To address these complexities, a paradigm shift towards a data-centricapplication landscape is essential, where data serves as the bedrock of the healthcare infrastructure and is application agnostic.In short, a modern way to think about data in general is to go from an application driven landscape to a data driven landscape, which willallow for better interoperability and innovative healthcare solutions.
LINK
The traffic safety of cyclists is under pressure. The number of fatalities and injuries is increasing, and the number of single-bicycle accidents is on the rise. However, from a traffic safety perspective, the most concerning trend is the growing number of incidents between motorized vehicles and cyclists. In addition to infrastructural solutions, such as more segregated and wider bike lanes, both industry and government are exploring technological developments to better safeguard cyclist safety. One of the technological solutions being considered is the use of C-V2X communication. C-V2X, Cellular Vehicle-to-X, is a technology that enables short-range signal exchanges between road users, informing them of each other's presence. C-V2X can be used, for example, to alert drivers via dedicated in-car information systems about the presence of cyclists on the road (e.g. at crossings). Although the technology and chipsets have been developed, the application of C-V2X to improve cyclist safety has not yet been thoroughly investigated. Therefore, HAN, Gazelle, and ARK Infomotives are researching the impact of C-V2X (on cyclist safety). Using advanced simulations with a digital twin in an urban environment and rural environment, the study will analyze how drivers respond to cyclist presence signals and determine the maximum penetration rate of ‘connected’ cyclists. Based on this, a pilot study will be conducted in a controlled environment on HAN terrain to validate the direction of the simulation results. The project aligns with the Missiegedreven Innovatiebeleid and the KIA Sleuteltechnologieën, specifically within application of digital and information technologies. This proposal aligns with the innovation domain of Semiconductor Technologies by applying advanced sensor and digital connectivity solutions to enhance cyclist safety. The project fits within the theme of Sleuteltechnologieën en Duurzame Materialen of the strategic research agenda of the VH by utilizing digital connectivity, sensor fusion, and data-driven decision-making for safer mobility solutions.
In the past decades, we have faced an increase in the digitization, digitalization, and digital transformation of our work and daily life. Breakthroughs of digital technologies in fields such as artificial intelligence, telecommunications, and data science bring solutions for large societal questions but also pose a new challenge: how to equip our (future)workforce with the necessary digital skills, knowledge, and mindset to respond to and drive digital transformation?Developing and supporting our human capital is paramount and failure to do so may leave us behind on individual (digital divide), organizational (economic disadvantages), and societal level (failure in addressing grand societal challenges). Digital transformation necessitates continuous learning approaches and scaffolding of interdisciplinary collaboration and innovation practices that match complex real-world problems. Research and industry have advocated for setting up learning communities as a space in which (future) professionals of different backgrounds can work, learn, and innovate together. However, insights into how and under which circumstances learning communities contribute to accelerated learning and innovation for digital transformation are lacking. In this project, we will study 13 existing and developing learning communities that work on challenges related to digital transformation to understand their working mechanisms. We will develop a wide variety of methods and tools to support learning communities and integrate these in a Learning Communities Incubator. These insights, methods and tools will result in more effective learning communities that will eventually (a) increase the potential of human capital to innovate and (b) accelerate the innovation for digital transformation
Today, embedded devices such as banking/transportation cards, car keys, and mobile phones use cryptographic techniques to protect personal information and communication. Such devices are increasingly becoming the targets of attacks trying to capture the underlying secret information, e.g., cryptographic keys. Attacks not targeting the cryptographic algorithm but its implementation are especially devastating and the best-known examples are so-called side-channel and fault injection attacks. Such attacks, often jointly coined as physical (implementation) attacks, are difficult to preclude and if the key (or other data) is recovered the device is useless. To mitigate such attacks, security evaluators use the same techniques as attackers and look for possible weaknesses in order to “fix” them before deployment. Unfortunately, the attackers’ resourcefulness on the one hand and usually a short amount of time the security evaluators have (and human errors factor) on the other hand, makes this not a fair race. Consequently, researchers are looking into possible ways of making security evaluations more reliable and faster. To that end, machine learning techniques showed to be a viable candidate although the challenge is far from solved. Our project aims at the development of automatic frameworks able to assess various potential side-channel and fault injection threats coming from diverse sources. Such systems will enable security evaluators, and above all companies producing chips for security applications, an option to find the potential weaknesses early and to assess the trade-off between making the product more secure versus making the product more implementation-friendly. To this end, we plan to use machine learning techniques coupled with novel techniques not explored before for side-channel and fault analysis. In addition, we will design new techniques specially tailored to improve the performance of this evaluation process. Our research fills the gap between what is known in academia on physical attacks and what is needed in the industry to prevent such attacks. In the end, once our frameworks become operational, they could be also a useful tool for mitigating other types of threats like ransomware or rootkits.