Athlete development depends on many factors that need to be balanced by the coach. The amount of data collected grows with the development of sensor technology. To make data-informed decisions for training prescription of their athletes, coaches could be supported by feedback through a coach dashboard. The aim of this paper is to describe the design of a coach dashboard based on scientific knowledge, user requirements, and (sensor) data to support decision making of coaches for athlete development in cyclic sports. The design process involved collaboration with coaches, embedded scientists, researchers, and IT professionals. A classic design thinking process was used to structure the research activities in five phases: empathise, define, ideate, prototype, and test phases. To understand the user requirements of coaches, a survey (n = 38), interviews (n = 8) and focus-group sessions (n = 4) were held. Design principles were adopted into mock-ups, prototypes, and the final coach dashboard. Designing a coach dashboard using the co-operative research design helped to gain deep insights into the specific user requirements of coaches in their daily training practice. Integrating these requirements, scientific knowledge, and functionalities in the final coach dashboard allows the coach to make data-informed decisions on training prescription and optimise athlete development.
DOCUMENT
De meest gebruikte opbouw in business intelligence, predictive analitics en analytics modellen is de moeilijkheidsgraad: 1) descriptive, 2) diagnostic, 3) predictive en 4) prescriptive. Deze schaal vertelt iets over de volwassenheid van het gebruik van data door de organisatie. Een model dat niet op zichzelf staat en een achterliggende methode kent is de data driehoek van EDM (Figuur 1), welke in dit artikel zal worden toegelicht.
LINK
ABSTRACT Purpose: This short paper describes the dashboard design process for online hate speech monitoring for multiple languages and platforms. Methodology/approach: A case study approach was adopted in which the authors followed a research & development project for a multilingual and multiplatform online dashboard monitoring online hate speech. The case under study is the project for the European Observatory of Online Hate (EOOH). Results: We outline the process taken for design and prototype development for which a design thinking approach was followed, including multiple potential user groups of the dashboard. The paper presents this process's outcome and the dashboard's initial use. The identified issues, such as obfuscation of the context or identity of user accounts of social media posts limiting the dashboard's usability while providing a trade-off in privacy protection, may contribute to the discourse on privacy and data protection in (big data) social media analysis for practitioners. Research limitations/implications: The results are from a single case study. Still, they may be relevant for other online hate speech detection and monitoring projects involving big data analysis and human annotation. Practical implications: The study emphasises the need to involve diverse user groups and a multidisciplinary team in developing a dashboard for online hate speech. The context in which potential online hate is disseminated and the network of accounts distributing or interacting with that hate speech seems relevant for analysis by a part of the user groups of the dashboard. International Information Management Association
LINK
Dashboard met data van de BIZ inventarisatie
LINK
Athlete development depends on many factors that need to be balanced by the coach. The amount of data collected grows with the development of sensor technology. To make data-informed decisions for training prescription of their athletes, coaches could be supported by feedback through a coach dashboard. The aim of this paper is to describe the design of a coach dashboard based on scientific knowledge, user requirements, and (sensor) data to support decision making of coaches for athlete development in cyclic sports. The design process involved collaboration with coaches, embedded scientists, researchers, and IT professionals. A classic design thinking process was used to structure the research activities in five phases: empathise, define, ideate, prototype, and test phases. To understand the user requirements of coaches, a survey (n = 38), interviews (n = 8) and focus-group sessions (n = 4) were held. Design principles were adopted into mock-ups, prototypes, and the final coach dashboard. Designing a coach dashboard using the co-operative research design helped to gain deep insights into the specific user requirements of coaches in their daily training practice. Integrating these requirements, scientific knowledge, and functionalities in the final coach dashboard allows the coach to make data-informed decisions on training prescription and optimise athlete development.
DOCUMENT
Dit project poogt een bijdrage te leveren aan het versterken van “de kennisketen van de gastvrijheidseconomie” middels de volgende projectdoelstellingen: • SWOT-analyse van huidige situatie, vanuit verschillende stakeholderperspectieven: kijkend vanuit de ontwikkelopgaves die men ziet, aan welke data over de customer journey is behoefte (inventarisatie)? Wat zijn de bijbehorende sterktes, zwaktes, kansen en bedreigingen (analyse)? • Versterken van de kennisketen via: hoe kunnen we kennisketen versterken met nieuwe technieken en door slim organiseren? • Een overzicht van strategische opties: welke strategische opties zijn er om 1.) sterktes te benutten om kansen te pakken en bedreigingen af te wenden en 2.) zwaktes op te lossen door kansen te pakken en gevaren te voorkomen die met bedreigingen meekomen • Input leveren voor 2.0 versie van het manifest van Gastvrij Overijssel en de beoogde oprichting van een “Data Hub” (waarvoor nog geen officiële werktitel) In de opvolgende hoofdstukken en paragrafen gaan we in op de aanpak (hoofdstuk 2) en de uitkomsten (hoofdstuk 3).
DOCUMENT
Hoe overbruggen we de kloof tussen accountant en dataspecialist? Deel 2 van een drieluik over data-analyse. In een eerder artikel is de buitenste ring van het 'VTA-model toegelicht'. In dit vervolgartikel worden de twee binnenste ringen besproken.
DOCUMENT
The healthcare sector has been confronted with rapidly rising healthcare costs and a shortage of medical staff. At the same time, the field of Artificial Intelligence (AI) has emerged as a promising area of research, offering potential benefits for healthcare. Despite the potential of AI to support healthcare, its widespread implementation, especially in healthcare, remains limited. One possible factor contributing to that is the lack of trust in AI algorithms among healthcare professionals. Previous studies have indicated that explainability plays a crucial role in establishing trust in AI systems. This study aims to explore trust in AI and its connection to explainability in a medical setting. A rapid review was conducted to provide an overview of the existing knowledge and research on trust and explainability. Building upon these insights, a dashboard interface was developed to present the output of an AI-based decision-support tool along with explanatory information, with the aim of enhancing explainability of the AI for healthcare professionals. To investigate the impact of the dashboard and its explanations on healthcare professionals, an exploratory case study was conducted. The study encompassed an assessment of participants’ trust in the AI system, their perception of its explainability, as well as their evaluations of perceived ease of use and perceived usefulness. The initial findings from the case study indicate a positive correlation between perceived explainability and trust in the AI system. Our preliminary findings suggest that enhancing the explainability of AI systems could increase trust among healthcare professionals. This may contribute to an increased acceptance and adoption of AI in healthcare. However, a more elaborate experiment with the dashboard is essential.
LINK
In dit rapport worden de activiteiten van Big Data Value Center in het project ‘Databoeren met boerendata in de aardappelsector’, een POP3 project, beschreven. Het BDVC heeft samen met Geronimo een proof of concept ontwikkeld op automatische voorzet ‘MijnPrecelen’ in RVO. Trefwoorden: digitalisering boerenbedrijf, pop3, databoeren, Proof of Concept, MijnPercelenRVO zaaknummer: 17717000042
DOCUMENT
Hyodol is een slimme sociale robot uit Zuid Korea, bedoeld voor ouderen met dementie. De robot is een sociaal maatje dat ondersteuning biedt in dagstructuur maar ook via sensoren data ophaalt. Door middel van een dashboard en een smartphone applicatie kunnen zorgverleners en mantelzorgers inzicht krijgen in het gebruik van de robot, berichten versturen en functies gepersonaliseerd instellen.
DOCUMENT