Automated Analysis of Human Performance Data could help to understand and possibly predict the performance of the human. To inform future research and enable Automated Analysis of Human Performance Data a systematic mapping study (scoping study) on the state-of-the-art knowledge is performed on three interconnected components(i)Human Performance (ii) Monitoring Human Performance and (iii) Automated Data Analysis. Using a systematic method of Kitchenham and Charters for performing the systematic mapping study, resulted in a comprehensive search for studies and a categorisation the studies using a qualitative method. This systematic mapping review extends the philosophy of Shyr and Spisic, and Knuth and represents the state-of-art knowledge on Human Performance,Monitoring Human Performance and Automated Data Analysis
DOCUMENT
Illicit data markets have emerged on Telegram, a popular online instant messaging application, bringing together thousands of users worldwide in an unregulated exchange of sensitive data. These markets operate through vendors who offer enormous quantities of such data, from personally identifiable information to financial data, while potential customers bid for these valuable assets. This study describes how Telegram data markets operate and discusses what interventions could be used to disrupt them. Using crime script analysis, we observed 16 Telegram meeting places encompassing public and private channels and groups. We obtained information about how the different meeting places function, what are their inside rules, and what tactics are employed by users to advertise and trade data. Based on the crime script, we suggest four feasible situational crime prevention measures to help disrupt these markets. These include taking down the marketplaces, reporting them, spamming and flooding techniques, and using warning banners. This is a post-peer-review, pre-copyedit version of an article published in Trends in organized crime . The final authenticated version is available online at https://doi.org/10.1007/s12117-024-09532-6
DOCUMENT
In the course of our supervisory work over the years, we have noticed that qualitative research tends to evoke a lot of questions and worries, so-called frequently asked questions (FAQs). This series of four articles intends to provide novice researchers with practical guidance for conducting high-quality qualitative research in primary care. By ‘novice’ we mean Master’s students and junior researchers, as well as experienced quantitative researchers who are engaging in qualitative research for the first time. This series addresses their questions and provides researchers, readers, reviewers and editors with references to criteria and tools for judging the quality of qualitative research papers. The second article focused on context, research questions and designs, and referred to publications for further reading. This third article addresses FAQs about sampling, data collection and analysis. The data collection plan needs to be broadly defined and open at first, and become flexible during data collection. Sampling strategies should be chosen in such a way that they yield rich information and are consistent with the methodological approach used. Data saturation determines sample size and will be different for each study. The most commonly used data collection methods are participant observation, face-to-face in-depth interviews and focus group discussions. Analyses in ethnographic, phenomenological, grounded theory, and content analysis studies yield different narrative findings: a detailed description of a culture, the essence of the lived experience, a theory, and a descriptive summary, respectively. The fourth and final article will focus on trustworthiness and publishing qualitative research.
DOCUMENT