This research presents a case study exploring the potential for demand side flexibility at a cluster of university buildings. The study investigates the potential of a collection of various electrical devices, excluding heating and cooling systems. With increasing penetration of renewable electricity sources and the phasing out of dispatchable fossil sources, matching grid generation with grid demand will become difficult using traditional grid management methods alone. Additionally, grid congestion is a pressing problem. Demand side management in buildings may contribute to a solution to these problems. Currently demand response is, however, not yet exploited at scale. In part, this is because it is unclear how this flexibility can be translated into successful business models, or whether this is possible under the current market regime. This research gives insight into the potential value of energy demand flexibility in reducing energy costs and increasing the match between electricity demand and purchased renewable electricity. An inventory is made of on-site electrical devices that offer load flexibility and the magnitude and duration of load shifting is estimated for each group of devices. A demand response simulation model is then developed that represents the complete collection of flexible devices. This model, addresses demand response as a ‘distribute candy’ problem and finds the optimal time-of-use for shiftable electricity demand whilst respecting the flexibility constraints of the electrical devices. The value of demand flexibility at the building cluster is then assessed using this simulation model, measured electricity consumption, and data regarding the availability of purchased renewables and day-ahead spot prices. This research concludes that coordinated demand response of large variety of devices at the building cluster level can improve energy matching by 0.6-1.5% and reduce spot market energy cost by 0.4-3.2%.
DOCUMENT
A transition of today’s energy system towards renewableresources, requires solutions to match renewable energy generationwith demand over time. These solutions include smartgrids, demand-side management and energy storage. Energycan be stored during moments of overproduction of renewableenergy and used from the storage during moments ofinsufficient production. Allocation in real time of generatedenergy towards controlled appliances or storage chargers, isdone by a smart control system which makes decisions basedon predictions (of upcoming generation and demand) andinformation of the actual condition of storages.
MULTIFILE
In this research, the experiences and behaviors of end-users in a smart grid project are explored. In PowerMatching City, the leading Dutch smart grid project, 40 households were equipped with various decentralized energy sources (PV and microCHP), hybrid heat pumps, smart appliances, smart meters and an in-home display. Stabilization and optimization of the network was realized by trading energy on the market. To reduce peak loads on the smart grid, several types of demand side management were tested. Households received feedback on their energy use either based on costs, or on the percentage of consumed energy that had been produced locally. Furthermore, devices could be controlled automatically, smartly or manually to optimize the energy use of the households. Results from quantitative and qualitative research showed that: (1) feedback on costs reduction is valued most; (2) end-users preferred to consume self-produced energy (this may even be the case when, from a cost or sustainability perspective, it is not the most efficient strategy to follow); (3) automatic and smart control are most popular, but manually controlling appliances is more rewarding; (4) experiences and behaviors of end-users depended on trust between community members, and on trust in both technology (ICT infrastructure and connected appliances) and the participating parties.
DOCUMENT
Renewable energy sources have an intermittent character that does not necessarily match energy demand. Such imbalances tend to increase system cost as they require mitigation measures and this is undesirable when available resources should be focused on increasing renewable energy supply. Matching supply and demand should therefore be inherent to early stages of system design, to avoid mismatch costs to the greatest extent possible and we need guidelines for that. This paper delivers such guidelines by exploring design of hybrid wind and solar energy and unusual large solar installation angles. The hybrid wind and solar energy supply and energy demand is studied with an analytical analysis of average monthly energy yields in The Netherlands, Spain and Britain, capacity factor statistics and a dynamic energy supply simulation. The analytical focus in this paper differs from that found in literature, where analyses entirely rely on simulations. Additionally, the seasonal energy yield profile of solar energy at large installation angles is studied with the web application PVGIS and an hourly simulation of the energy yield, based on the Perez model. In Europe, the energy yield of solar PV peaks during the summer months and the energy yield of wind turbines is highest during the winter months. As a consequence, three basic hybrid supply profiles, based on three different mix ratios of wind to solar PV, can be differentiated: a heating profile with high monthly energy yield during the winter months, a flat or baseload profile and a cooling profile with high monthly energy yield during the summer months. It is shown that the baseload profile in The Netherlands is achieved at a ratio of wind to solar energy yield and power of respectively Ew/Es = 1.7 and Pw/Ps = 0.6. The baseload ratio for Spain and Britain is comparable because of similar seasonal weather patterns, so that this baseload ratio is likely comparable for other European countries too. In addition to the seasonal benefits, the hybrid mix is also ideal for the short-term as wind and solar PV adds up to a total that has fewer energy supply flaws and peaks than with each energy source individually and it is shown that they are seldom (3%) both at rated power. This allows them to share one cable, allowing “cable pooling”, with curtailment to -for example-manage cable capacity. A dynamic simulation with the baseload mix supply and a flat demand reveals that a 100% and 75% yearly energy match cause a curtailment loss of respectively 6% and 1%. Curtailment losses of the baseload mix are thereby shown to be small. Tuning of the energy supply of solar panels separately is also possible. Compared to standard 40◦ slope in The Netherlands, facade panels have smaller yield during the summer months, but almost equal yield during the rest of the year, so that the total yield adds up to 72% of standard 40◦ slope panels. Additionally, an hourly energy yield simulation reveals that: façade (90◦) and 60◦ slope panels with an inverter rated at respectively 50% and 65% Wp, produce 95% of the maximum energy yield at that slope. The flatter seasonal yield profile of “large slope panels” together with decreased peak power fits Dutch demand and grid capacity more effectively.
DOCUMENT
De African Digital Rights Network (ADRN) heeft een nieuw rapport gepubliceerd waarin de toevoer en verspreiding van digitale surveillance technologie in Afrika in kaart is gebracht. Onderzoeker Anand Sheombar van het lectoraat Procesinnovatie & Informatiesystemen is betrokken bij het ADRN-collectief en heeft samen met de Engelse journalist Sebastian Klovig Skelton, door middel van desk research de aanvoerlijnen vanuit Westerse en Noordelijke landen geanalyseerd. De bevindingen zijn te lezen in dit Supply-side report hoofdstuk van het rapport. APA-bronvermelding: Klovig Skelton, S., & Sheombar, A. (2023). Mapping the supply of surveillance technologies to Africa Supply-side report. In T. Roberts (Ed.), Mapping the Supply of Surveillance Technologies to Africa: Case Studies from Nigeria, Ghana, Morocco, Malawi, and Zambia (pp. 136-167). Brighton, UK: Institute of Development Studies.
MULTIFILE
It is a challenge for mathematics teachers to provide activities for their students at a high level of cognitive demand. In this article, we explore the possibilities that history of mathematics has to offer to meet this challenge. History of mathematics can be applied in mathematics education in different ways. We offer a framework for describing the appearances of history of mathematics in curriculum materials. This framework consists of four formats that are entitled speck, stamp, snippet, and story. Characteristic properties are named for each format, in terms of size, content, location, and function. The formats are related to four ascending levels of cognitive demand. We describe how these formats, together with design principles that are also derived from the history of mathematics, can be used to raise the cognitive level of existing tasks and design new tasks. The combination of formats, cognitive demand levels, and design principles is called the 4S-model. Finally, we advocate that this 4S-model can play a role in mathematics teacher training to enable prospective teachers to reach higher cognitive levels in their mathematics classrooms.
DOCUMENT
Accurate modeling of end-users’ decision-making behavior is crucial for validating demand response (DR) policies. However, existing models usually represent the decision-making behavior as an optimization problem, neglecting the impact of human psychology on decisions. In this paper, we propose a Belief-Desire-Intention (BDI) agent model to model end-users’ decision-making under DR. This model has the ability to perceive environmental information, generate different power scheduling plans, and make decisions that align with its own interests. The key modeling capabilities of the proposed model have been validated in a household end-user with flexible loads
DOCUMENT
Wereldwijd onderzoek naar vraagsturing toont volgens Martien Visser tal van kansen. Maar ook dat er veel nodig is om energieafnemers te verleiden hun energievraag aan te passen.
LINK
Creative SMEs are heavily focusing on the creating process designing new products and services. Consequently, their managers tend to loose contact with crucial management issues. Especially their knowledge of the financial aspects of their business can be so limited that they fail to connect with the financial viability of their business, which can lead to serious business problems. This paper draws on a number of studies that examine the role of outsiders -contracted professional service providers- in relation to business success of SMEs. In the light of the potential growth of Flemish creative SMEs on international markets the question can be raised as to what extent outsiders, and more specifically financial service providers like accountants and banks, contribute to the export success of these firms. In this paper therefore the role played by accountants and banks was explored to solve export-related questions by small furniture designers in Flanders, Belgium. Export can be considered as the most successful growth and therefore raises interesting management issues for creative SMEs. Little is known about the content and intensity of services of accountants and bank employees in relation to export-related questions of owner-managers of small creative firms. In order to examine the fit between supply and demand the focus is on outsider contribution during six phases of export.
DOCUMENT
High-tech horticulture production methods (such as vertical farming, hydroponics and other related technology possibilities), combined with evolving market side possibilities (consumer’s willingness to pay for variety, food safety and security), are opening new ways to create and deliver value. In this paper we present four emerging business models and attempt to understand the conditions under which each business model is able to create positive market value and sustained business advantage. The first of these four models is the case of a vertically integrated production to retail operation. The second model is the case of a production model with assured retail/distribution side commitment. The third model deals with a marketing/branding driven production model with differentiated market positioning. Finally, the forth is a production model with direct delivery to the end-consumer based upon the leveraging of wide spread digital technology in the consumer market. To demonstrate these four business models, we analyze practical case studies and analyze their market approach and impact. Using this analysis, we create a framework that enables entrepreneurs and businesses to adopt a business model that matches their capabilities with market opportunities.
DOCUMENT