The coronavirus pandemic highlighted the vital role urban areas play in supporting citizens’ health and well-being (Ribeiro et al., 2021). In times of (personal) vulnerability, citizens depend on their neighbourhood for performing daily physical activities to restore their mental state, but public spaces currently fall short in fulfilling the appropriate requirements to achieve this. The situation is exacerbated by Western ambitions to densify through high-rise developments to meet the housing demand. In this process of urban densification, public spaces are the carriers where global trends, local ambitions and the conditions for the social fabric materialise (Battisto & Wilhelm, 2020). High-rise developments in particular will determine users’ experiences at street-level. Consequently, they have an enduring influence on the liveability of neighbourhoods for the coming decades but, regarding the application of urban design principles, their impact is hard to dissect (Gifford, 2007).Promising emerging technologies and methods from the new transdisciplinary field of neuroarchitecture may help identify and monitor the impact of certain physical characteristics on human well-being in an evidence-based way. In the two-year Sensing Streetscapes research study, biometric tools were tested in triangulation with traditional methods of surveys and expert panels. The study unearthed situational evidence of the relationship between designed and perceived spaces by investigating the visual properties and experience of high-density environments in six major Western cities. Biometric technologies—Eye-Tracking, Galvanic Skin Response, mouse movement software and sound recording—were applied in a series of four laboratory tests (see Spanjar & Suurenbroek, 2020) and one outdoor test (see Hollander et al., 2021). The main aim was to measure the effects of applied design principles on users’ experiences, arousal levels and appreciation.Unintentionally, the research study implied the creation of a 360° built-environment assessment tool. The assessment tool enables researchers and planners to analyse (high-density) urban developments and, in particular, the architectural attributes that (subliminally) affect users’ experience, influencing their behaviour and perception of place. The tool opens new opportunities for research and planning practice to deconstruct the successes of existing high-density developments and apply the lessons learned for a more advanced, evidence-based promotion of human health and well-being.ReferencesBattisto, D., & Wilhelm, J. J. (Eds.). (2020). Architecture and Health Guiding Principles for Practice. Routledge, Taylor & Francis Group. Gifford, R. (2007). The Consequences of Living in High-Rise Buildings. Architectural Science Review, 50(1), 2–17. https://doi.org/https://doi.org/10.3763/asre.2007.5002 Hollander, J. B., Spanjar, G., Sussman, A., Suurenbroek, F., & Wang, M. (2021). Programming for the subliminal brain: biometric tools reveal architecture’s biological impact. In K. Menezes, P. de Oliveira-Smith, & A. V. Woodworth (Eds.), Programming for Health and Wellbeing in Architecture (pp. 136–149). Routledge, Taylor & Francis Group. https://doi.org/https://doi.org/10.4324/9781003164418 Ribeiro, A. I., Triguero-Mas, M., Jardim Santos, C., Gómez-Nieto, A., Cole, H., Anguelovski, I., Silva, F. M., & Baró, F. (2021). Exposure to nature and mental health outcomes during COVID-19 lockdown. A comparison between Portugal and Spain. Environment International, 154, 106664. https://doi.org/https://doi.org/10.1016/j.envint.2021.106664 Spanjar, G., & Suurenbroek, F. (2020). Eye-Tracking the City: Matching the Design of Streetscapes in High-Rise Environments with Users’ Visual Experiences. Journal of Digital Landscape Architecture (JoDLA), 5(2020), 374–385. https://gispoint.de/gisopen-paper/6344-eye-tracking-the-city-matching-the-design-of-streetscapes-in-high-rise-environments-with-users-visual-experiences.html?IDjournalTitle=6
MULTIFILE
The liveability of cities worldwide is under threat by the predicted increase in intensity and frequency of heatwaves and the absence of a clear spatial overview of where action to address this. Heat stress impairs vital urban functions (Böcker and Thorsson 2014), hits the local economy (Evers et al. 2020), and brings risks for citizens’ health (Ebi et al. 2021). The ongoing densification of cities may escalate the negative consequences of heat, while rising climate adaptation ambitions require new pathways to (re)design public places for a warmer climate. Currently, policy makers and urban planners rely on remote sensing and modelling to identify potential heat stress locations, but thermal comfort models alone fail to consider socio-environmental vulnerabilities and are often not applicable in different countries (Elnabawi and Hamza 2020).In the Cool Towns Interreg project, researchers collaborated with municipalities and regions to model urban heat stress in nine North-Western European cities, to find vulnerabilities and to measure on the ground (see Spanjar et al. 2020 for methodology) the thermal comfort of residents and the effectiveness of implemented nature-based solutions. Using the Physiological Equivalent Temperature (PET) index, several meteorological scenarios were developed to show the urban areas under threat. The PET maps are complemented by heat vulnerability maps showing key social and environmental indicators. Coupled with local urban planning agendas, the maps allowed partner cities to prioritize neighbourhoods for further investigation. To this end, community amenities and slow traffic routes were mapped on top of the PET maps to identify potential focus areas.A comparative analysis of the collated maps indicates certain spatial typologies, where vital urban activities are often influenced by heat stress, such as shopping areas, mobility hubs, principal bicycle and pedestrian routes. This project has resulted in the development of a multi-level Thermal Comfort Assessment (TCA), highlighting locations where vulnerable user groups are exposed to high temperatures. Standardized for European cities, it is a powerful tool for policy makers and urban planners to strategically identify heat stress risks and prioritize locations for adapting to a changing climate using the appropriate nature-based solutions.
MULTIFILE
Habitat fragmentation caused by urbanization and climate change are important drivers of biodiversity decline and ecosystem degradation (McKinney, 2002). Governmental inaction results in cascade effects, such as the extinction of species and the weakening of ecosystem services that citizens depend on. Alarming studies show the continuing loss of nature within European cities as they densify further to meet the demand for housing (Balikçi et al., 2022). The housing market is currently impacted negatively by economic factors and municipalities often respond by scaling back their sustainability ambitions. To avoid cosmetic greening of cities, the eco-social value of urban developments and their contribution to climate-change adaptation need to be made measurable. Developing nature-based urban areas offers opportunities to increase socio-ecological resilience (McPhearson et al., 2015; Spanjar et al., 2022).In the two-year Nature-Based Area Development study researchers at four Dutch universities collaborated with planning professionals in cities, regions and companies to investigate how nature-based urban development can become a forceful reality. The study applied a combination of methods such as co-research sessions with consortium partners, in-depth interviews with experts and a multiple case study analysis of best practices in the Netherlands and abroad. Malmö and Stockholm are frontrunners in applying innovative green planning instruments such as Green Area Factor to meet high environmental ambitions (Kruuse, 2011). These instruments were also analysed and compared with eco-city projects in the Netherlands to identify their effectiveness in fostering nature and ecosystem services.The analysis shows barriers in governance and spatiality between public and (semi-)private developments. Policy silos and ownership divisions often lead to standalone interventions that negatively impact social and ecological connectedness and projects’ potential for climate-change adaptation. Nature-based urban developments require a proactive effort to understand the precise ecological demands across scales and how they can be harnessed effectively in these complex planning processes. The results of the study provide key lessons and inspiration to enable authorities to implement more effective nature-based planning instruments.
MULTIFILE
The city of Amsterdam is well-known for its creative citizens, innovative use of public spaces, and bottom up and informal (citizen) initiatives. Many of these initiatives are endorsed and - after some time - formalised by local government. However, some need to be relocated or disappear due to densification-strategies. This is particularly the case in contexts of urban growth and not unique for Amsterdam. Depending on the specific circumstances, densification strategies compensate densification with nature conservation and/or public space programs. Densification is a contested approach – chiefly because it often entails quantitative approaches that are abstracting specific places into numerical value and generalized policy ambitions that do not resonate with the creative language and practical wisdom and imagination at play in the specific places. Often, these strategies also involve uncertainty regarding their relationship with informal citizen initiatives. Particularly in the urban fringe, we see a variety of initiatives that have developed over the years and which have obtained temporary approval for their activities. In this pop-up research we explore if, and how techniques of research by design contribute to making productive these confrontations – between formal and informal resources, between practical wisdom and generalised knowledge, between local creative-artistic and more general quantitative approaches - with the broader aim to create more sustainable and liveable cities.