Office well-being aims to explore and support a healthy, balanced and active work style in office environments. Recent work on tangible user interfaces has started to explore the role of physical, tangible interfaces as active interventions to explore how to tackle problems such as inactive work and lifestyles, and increasingly sedentary behaviours. We identify a fragmented research landscape on tangible Office well-being interventions, missing the relationship between interventions, data, design strategies, and outcomes, and behaviour change techniques. Based on the analysis of 40 papers, we identify 7 classifications in tangible Office well-being interventions and analyse the intervention based on their role and foundation in behaviour change. Based on the analysis, we present design considerations for the development of future tangible Office well-being design interventions and present an overview of the current field and future research into tangible Office well-being interventions to design for a healthier and active office environment.
DOCUMENT
Fashion design has rapidly become a digital process where textiles are simulated as soft, conformable materials on a digital body. The embodied experience and physical interaction with the textile have been replaced by screen-based media, resulting in a gap in understanding between physical and digital textile material. Consequently, understanding digitized textile properties and characteristics has become challenging for practitioners. This research investigates fashion designers’ implicit understanding when selecting textiles, specifically how interactions with physical textiles influence design considerations. Twenty digital fashion designers interacted with ten physical textile materials via tangible and scientific drape measurements, reflecting upon their design considerations. In digital environments, a tangible understanding of material properties is vital, and scientific drape measurements add significant understanding to digital design. The research advances our understanding of integrating digital tools in textile and soft material practices, where a postphenomenological approach is employed to help formulate the design considerations in selecting materials.
DOCUMENT
This study focuses on the school–work connection from the perspective of curriculum design. The aim was to uncover considerations underpinning the design of learning environments in vocational education. The research took place in the Netherlands. A focus group methodology was chosen to elicit designers’ considerations, which generally remain largely implicit. These considerations concern the designable elements of learning environments: epistemic, spatial, temporal, and social elements. Design considerations were uncovered at each of the aggregation levels of a curriculum. At the macro-level, considerations referred to the connectivity between the contexts of school and work. Based on these considerations, different designs were chosen along the school–work continuum. At the meso-level, another continuum was found: the complexity in terms of practices involved in the learning environment. At the micro-level, concrete design considerations were revealed that designers take into account to strengthen the school–work connection. Thus, design considerations at three levels were made explicit. Moreover, the need for alignment between the designable elements and the curriculum levels became more apparent, leading to a deeper understanding of curriculum design for vocational education. This paper adds understanding of ways to strengthen the school–work connection and design future-proof vocational curricula.
LINK
Fashion and textile practice transitioned over the past decade from a physically engaged design practice into a screen-based design practice with textiles simulated on digital bodies. Digital designers use tangible interaction with textiles for post-phenomenological design considerations. Our research indicates a complementary relationship between tangible interaction and drape observation, which allows for new approaches when considering textile materials. The drape observation based on drape measurement methods developed in textile science equips designers with a deeper material understanding. As the flat textile is placed in the scientific setup, the deformation and the designer's experience co-shape design considerations. The physical-to-digital paradigm shift disconnects designers from the tangible interaction with the textile. Fashion designers' approach contrasts with textile science methods to measure textile properties (needed to simulate textiles) and drape. Equipping designers with this understanding of textile technology requires interdisciplinary developments to make combined tangible drape tools accessible in physical and digital design spaces. Understanding design considerations in physical-digital practices and material drape, utilizing simulated textile properties, is essential for this endeavor. Cross-disciplinary understanding of textiles and similar soft materials between fashion designers, design researchers, textile and computer researchers, and cultural heritage researchers seems valuable in reducing measurement hurdles and creating tools to increase relationships between the physical and digital textiles and improving visual analyses and assessment of textiles. Our reflection to sharpen the post-phenomenological lens and cross-disciplinary collaborations of our past and future research contributes to understanding physical-digital textile design considerations and required cross-disciplinary interaction.
MULTIFILE
Educational institutions and vocational practices need to collaborate to design learning environments that meet current-day societal demands and support the development of learners’ vocational competence. Integration of learning experiences across contexts can be facilitated by intentionally structured learning environments at the boundary of school and work. Such learning environments are co-constructed by educational institutions and vocational practices. However, co-construction is challenged by differences between the practices of school and work, which can lead to discontinuities across the school–work boundary. More understanding is needed about the nature of these discontinuities and about design considerations to counterbalance these discontinuities. Studies on the co-construction of learning environments are scarce, especially studies from the perspective of representatives of work practice. Therefore, the present study explores design considerations for co-construction through the lens of vocational practice. The study reveals a variety of discontinuities related to the designable elements of learning environments (i.e. epistemic, spatial, instrumental, temporal, and social elements). The findings help to improve understanding of design strategies for counterbalancing discontinuities at the interpersonal and institutional levels of the learning environment. The findings confirm that work practice has a different orientation than school practice since there is a stronger focus on productivity and on the quality of the services provided. However, various strategies for co-construction also seem to take into account the mutually beneficial learning potential of the school–work boundary.
LINK
In this paper we explore the influence of the physical and social environment (the design space) son the formation of shared understanding in multidisciplinary design teams. We concentrate on the creative design meeting as a microenvironment for studying processes of design communication. Our applied research context entails the design of mixed physical–digital interactive systems supporting design meetings. Informed by theories of embodiment that have recently gained interest in cognitive science, we focus on the role of interactive “traces,” representational artifacts both created and used by participants as scaffolds for creating shared understanding. Our research through design approach resulted in two prototypes that form two concrete proposals of how the environment may scaffold shared understanding in design meetings. In several user studies we observed users working with our systems in natural contexts. Our analysis reveals how an ensemble of ongoing social as well as physical interactions, scaffolded by the interactive environment, grounds the formation of shared understanding in teams. We discuss implications for designing collaborative tools and for design communication theory in general.
MULTIFILE
The use of Augmented Reality (AR) in industry is growing rapidly, driven by benefits such as efficiency gains and ability to overcome physical boundaries. Existing studies stress the need to take stakeholder values into account in the design process. In this study the impact of AR on stakeholders' values is investigated by conducting focus groups and interviews, using value sensitive design as a framework. Significant impacts were found on the values of safety, accuracy, privacy, helpfulness and autonomy. Twenty practical design choices to mitigate potential negative impact emerged from the study.
MULTIFILE
Design schools in digital media and interaction design face the challenge of integrating recent artificial intelligence (AI) advancements into their curriculum. To address this, curricula must teach students to design both "with" and "for" AI. This paper addresses how designing for AI differs from designing for other novel technologies that have entered interaction design education. Future digital designers must develop new solution repertoires for intelligent systems. The paper discusses preparing students for these challenges, suggesting that design schools must choose between a lightweight and heavyweight approach toward the design of AI. The lightweight approach prioritises designing front-end AI applications, focusing on user interfaces, interactions, and immediate user experience impact. This requires adeptness in designing for evolving mental models and ethical considerations but is disconnected from a deep technological understanding of the inner workings of AI. The heavyweight approach emphasises conceptual AI application design, involving users, altering design processes, and fostering responsible practices. While it requires basic technological understanding, the specific knowledge needed for students remains uncertain. The paper compares these approaches, discussing their complementarity.
DOCUMENT
Assessment in higher education (HE) is often focused on concluding modules with one or more tests that students need to pass. As a result, both students and teachers are primarily concerned with the summative function of assessment: information from tests is used to make pass/fail decisions about students. In recent years, increasing attention has been paid to the formative function of assessment and focus has shifted towards how assessment can stimulate learning. However, this also leads to a search for balance between both functions of assessment. Programmatic assessment (PA) is an assessment concept in which their intertwining is embraced to strike a new balance. A growing number of higher education programmes has implemented PA. Although there is consensus about the theoretical principles that form the basis for the design of PA, programmes make various specific design choices based on these principles, fitting with their own context. This paper provides insight into the design choices that programmes make when implementing PA and into the considerations that play a role in making these design choices. Such an overview is important for research purposes because it creates a framework for investigating the effects of different design choices within PA.
DOCUMENT
Background: Older adults are a rapidly growing group world-wide, requiring an increasing amount of healthcare. Technological innovations such as care robots may support the growing demand for care. However, hardly any studies address those who will most closely collaborate with care robots: the (trainee) healthcare professional. Methods: This study examined the moral considerations, perceptions of utility, and acceptance among trainee healthcare professionals toward different types of care robots in an experimental questionnaire design (N = 357). We also examined possible differences between participants’ intermediate and higher educational levels. Results: The results show that potential maleficence of care robots dominated the discussion in both educational groups. Assisting robots were seen as potentially the most maleficent. Both groups deemed companion robots least maleficent and most acceptable, while monitoring robots were perceived as least useful. Results further show that the acceptance of robots in care was more strongly associated with the participants’ moral considerations than with utility. Conclusions: Professional care education should include moral considerations and utility of robotics as emerging care technology. The healthcare and nursing students of today will collaborate with the robotic colleagues of tomorrow
LINK