This research aims to obtain more insight in the perception of fabric drape and how fabric drape can be cat-egorized With the current 3D virtual technologies to simulate garments the fashion and clothing industry can speed up work processes, improve accuracy and reduce material consumption in fit, design and sales. Although the interest in 3D technology is increasing, the implementation on a large scale emerges only slowly. At the threshold between physical and virtual fitting the fashion industry faces new challenges and demands re-quiring responses out of rule. The measurement of fabric drape started in the first half of the previous cen-tury, after the introduction of 3D garment simulation fabric drape gained interest from more researchers to obtain information for the virtual drape. Intensive research has been undertaken to define ‘fabric hand’, however, research is limited for the definition of fabric drape. Better understanding of how fabrics drape and how they can be selected based on their drape might contribute to the understanding of the virtually as-sessed material and accelerate the selection process of virtually, as well as digitally presented fabrics. For this research the drape coefficient of 13 fabrics, selected based on their drape, was measured with the Cusick drape tester. Images and videos of the fabrics draped on pedestals were presented to an expert tex-tile panel who were asked to define the fabric drape. From these definitions categories, as well as identifying key-words, were derived. During a group session the expert panel evaluated the drape categories and identi-fying key-words. In the next phase an expert user panel, familiar with the assessment of fabrics in a virtual environment, assessed the appropriateness of the categories and identifying key-words which were present-ed along with the fabric drape images and videos. Moreover, both panels judged the stiffness and amount of drape, next to that they indicated similar draping fabrics. The relation between the subjective assessment of drape and the drape coefficient was investigated. The agreement of the user panel with the drape categories defined and evaluated by the textile panel was high. Further, the agreement of the majority of the user panel with the identifying key-words was above 78%. A strong relation was found between the measured drape coefficient and the subjectively assessed stiffness and amount of drape. Additionally, the analysis of the fabrics combined by the panels based on drape simi-larity, as well as the analysis of the drape coefficients, confirms with previous research, that significantly dif-ferent fabrics can have a similar drape. Fabrics can be divided in drape categories based on the way they drape, and the identifying key-words are useful to distinguish between significantly different fabrics with similar fabric drape. Moreover, the cate-gories are related to the drape coefficient.
Summary: Xpaths is a collection of algorithms that allow for the prediction of compound-induced molecular mechanisms of action by integrating phenotypic endpoints of different species; and proposes follow-up tests for model organisms to validate these pathway predictions. The Xpaths algorithms are applied to predict developmental and reproductive toxicity (DART) and implemented into an in silico platform, called DARTpaths.
From the article: "To enable selection of novel chemicals for new processes, there is a recognized need for alternative toxicity screening assays to assess potential risks to man and the environment. For human health hazard assessment these screening assays need to be translational to humans, have high throughput capability, and from an animal welfare perspective be harmonized with the principles of the 3Rs (Reduction, Refinement, Replacement). In the area of toxicology a number of cell culture systems are available but while these have some predictive value, they are not ideally suited for the prediction of developmental and reproductive toxicology (DART). This is because they often lack biotransformation capacity, multicellular or multi- organ complexity, for example, the hypothalamus pituitary gonad (HPG) axis and the complete life cycle of whole organisms. To try to overcome some of these limitations in this study, we have used Caenorhabditis elegans (nematode) and Danio rerio embryos (zebrafish) as alternative assays for DART hazard assessment of some candidate chemicals being considered for a new commercial application. Nematodes exposed to Piperazine and one of the analogs tested showed a slight delay in development compared to untreated animals but only at high concentrations and with Piperazine as the most sensitive compound. Total brood size of the nematodes was also reduced primarily by Piperazine and one of the analogs. In zebrafish Piperazine and analogs showed developmental delays. Malformations and mortality in individual fish were also scored. Significant malformations were most sensitively identified with Piperazine, significant mortality was only observed in Piperazine and only at the higest dose. Thus, Piperazine seemed the most toxic compound for both nematodes and zebrafish. The results of the nematode and zebrafish studies were in alignment with data obtained from conventional mammalian toxicity studies indicating that these have potential as developmental toxicity screening systems. The results of these studies also provided reassurance that none of the Piperazines tested are likely to have any significant developmental and/or reproductive toxicity issues to humans when used in their commercial applications."