The metabolic syndrome (MetS) comprises cardiometabolic risk factors frequently found in individuals with obesity. Guidelines to prevent or reverse MetS suggest limiting fat intake, however, lowering carbohydrate intake has gained attention too. The aim for this review was to determine to what extent either weight loss, reduction in caloric intake, or changes in macronutrient intake contribute to improvement in markers of MetS in persons with obesity without cardiometabolic disease. A meta-analysis was performed across a spectrum of studies applying low-carbohydrate (LC) and low-fat (LF) diets. PubMed searches yielded 17 articles describing 12 separate intervention studies assessing changes in MetS markers of persons with obesity assigned to LC (<40% energy from carbohydrates) or LF (<30% energy from fat) diets. Both diets could lead to weight loss and improve markers of MetS. Meta-regression revealed that weight loss most efficaciously reduced fasting glucose levels independent of macronutrient intake at the end of the study. Actual carbohydrate intake and actual fat intake at the end of the study, but not the percent changes in intake of these macronutrients, improved diastolic blood pressure and circulating triglyceride levels, without an effect of weight loss. The homeostatic model assessment of insulin resistance improved with both diets, whereas high-density lipoprotein cholesterol only improved in the LC diet, both irrespective of aforementioned factors. Remarkably, changes in caloric intake did not play a primary role in altering MetS markers. Taken together, these data suggest that, beyond the general effects of the LC and LF diet categories to improve MetS markers, there are also specific roles for weight loss, LC and HF intake, but not reduced caloric intake, that improve markers of MetS irrespective of diet categorization. On the basis of the results from this meta-analysis, guidelines to prevent MetS may need to be re-evaluated.
MULTIFILE
The protein transition from animal towards plant proteins, is driven by the growth of the world’s population combined with a rising standard of living. Over the last five years, this has already resulted in a 7-fold increase in product launches with a plant-based claim or notification. This manuscript gives an overview of current, emerging and future protein sources and their use to replace protein in dairy and meat products as well as egg proteins. Currently, a major focus is on the development of products that mimic the original product the most, for example the best meat alternative. However, the question arises if this is enough to change the overall balance between animal and plant proteins? The outlook discusses the demand for a better understanding of consumer needs and preferences.
LINK
The European eel (Anguilla anguilla) is a delicacy fish and an integral part of the Dutch culinary history. However, the stock of adult eel has decreased significantly due to a precipitous recruitment of glass eel fall. This relates to multiple factors including obstacles in migration pathways, loss of habitat and chemical pollution. Consequently, Anguilla anguilla has become a critically endangered species and is protected under European legislation. One possible solution, explored on laboratory scale, is the captive reproduction of eels and growth of glass eel in aquaculture. A big challenge of this technique is the limiting aspect of possible nutrients for the eels in the larval stage, as the diet must be delivered in micrometric capsules (< 20 µm) with a high protein content. Such diets are not yet available on the market. Electrohydrodynamic atomization (EHDA) is a novel option to prepare a micro-diet suitable for eel larvae. EHDA is especially interesting for its narrow size distribution capabilities and for applications which require submicrometric sizes. This project aims to evaluate the use of EHDA to produce high protein content micrometric size capsules for feeding larval eels. If successful, this would assist in the captivity production of glass eel and to make the eel culture independent of wild catches, restoring the culinary market. The project will be conducted in two phases. Firstly, tests will be conducted to evaluate the necessary conditions of the capsules using EHDA. Subsequently, the obtained capsules will be tested as feed for eel larvae. The main objective is to favour the development of a more sustainable eel culture, regarding the possibilities of investigating the current fish in natura option and exchanging it for a captivity one.
The composition of diets and supplements given to bovine cattle are constantly evolving. These changes are driven by the social call for a more sustainable beef and dairy production, interests to influence the nutritional value of bovine products for human consumption, and to increase animal health. These adaptations can introduce (new) compounds in the beef and milk supply chain. Currently, the golden standard to study transfer of compounds from feed or veterinary medicine to cows and consequences for human health is performing animal studies, which are time consuming, costly and thus limited. Although animal studies are increasingly debated for ethical reasons, cows are still in the top 10 list of most used animals for animal experiments in Europe. There is, however, no widely applicable alternative modelling tool available to rapidly predict transfer of compounds, apart from individual components like cattle kinetic models and simple in vitro kinetic assays. Therefore, this project aims to develop a first-of-a-kind generic bovine kinetic modelling platform that predicts the transfer of compounds from medicine/supplements and feed to bovine tissues. This will provide new tools for the efficacy and safety evaluation of veterinary medicine and feed and facilitates a rapid evaluation of human health effects of bovine origin food products, thereby contributing to an increased safety in the cattle production chain and supporting product innovations, all without animal testing. This will be accomplished by integrating existing in silico and in vitro techniques into a generic bovine modelling platform and further developing state-of-the-art in vitro bovine organoid cell culturing systems. The platform can be used world-wide by stakeholders involved in the cattle industry (feed-/veterinary medicine industry, regulators, risk assessors). The project partners involve a strong combination of academia, knowledge institutes, small and medium enterprises, industry, branche-organisations and Proefdiervrij, all driven by their pursuit for animal free innovations.