Plant photosynthesis and biomass production are associated with the amount of intercepted light, especially the light distribution inside the canopy. Three virtual canopies (n = 80, 3.25 plants/m2) were constructed based on average leaf size of the digitized plant structures: ‘small leaf’ (98.1 cm2), ‘medium leaf’ (163.0 cm2) and ‘big leaf’ (241.6 cm2). The ratios of diffuse light were set in three gradients (27.8%, 48.7%, 89.6%). The simulations of light interception were conducted under different ratios of diffuse light, before and after the normalization of incident radiation. With 226.1% more diffuse light, the result of light interception could increase by 34.4%. However, the 56.8% of reduced radiation caused by the increased proportion of diffuse light inhibited the advantage of diffuse light in terms of a 26.8% reduction in light interception. The big-leaf canopy had more mutual shading effects, but its larger leaf area intercepted 56.2% more light than the small-leaf canopy under the same light conditions. The small-leaf canopy showed higher efficiency in light penetration and higher light interception per unit of leaf area. The study implied the 3D structural model, an effective tool for quantitative analysis of the interaction between light and plant canopy structure.
MULTIFILE
Studies among people with dementia demonstrated that the sleep quality and rhythm improves significantly when people are exposed to ambient bright light. Since almost half of the healthy older people also indicate to suffer from chronic sleep disorders, the question arises whether ambient bright light can be beneficial to healthy older people. Particularly the effect on sleep/wake rhythm in relation to the exposure to natural light is the focus. It was hypothesised that the sleep quality would be worse in winter due to a lower daylight dose than in summer due to the lower illuminance and exposure duration. A field study was conducted to examine the relationship between daylight exposure and sleep quality in 14 healthy older adults living independently in their own dwellings in the Netherlands. All participants were asked to take part of the study both during the summer period as well as during the winter period. Therefore, they had to wear an actigraph for five consecutive days which measured sleep, activity and light exposure. Results confirmed that people were significantly longer exposed to high illumination levels (>1000 lx) in summer than in winter. Sleep quality measures, however, did not differ significantly between summer and winter. A significant, positive correlation was found between exposure duration to high illuminance from daylight during the day and the sleep efficiency the following night in summer, implying that being exposed to high illuminance for a longer time period has a positive effect on sleep efficiency for the individual data. There was also a tendency of less frequent napping in case of longer exposure duration to light for both seasons. Sleep quality does not differ between summer and winter but is related to the duration of the exposure to bright light the day prior to the night. CC-BY Original article at http://solarlits.com/jd/5-14 http://dx.doi.org/10.15627/jd.2018.2 https://www.dehaagsehogeschool.nl/onderzoek/lectoraten/details/urban-ageing#over-het-lectoraat
MULTIFILE
Spectral imaging has many applications, from methane detection using satellites to disease detection on crops. However, spectral cameras remain a costly solution ranging from 10 thousand to 100 thousand euros for the hardware alone. Here, we present a low-cost multispectral camera (LC-MSC) with 64 LEDs in eight different colors and a monochrome camera with a hardware cost of 340 euros. Our prototype reproduces spectra accurately when compared to a reference spectrometer to within the spectral width of the LEDs used and the ±1σ variation over the surface of ceramic reference tiles. The mean absolute difference in reflectance is an overestimate of 0.03 for the LC-MSC as compared to a spectrometer, due to the spectral shape of the tiles. In environmental light levels of 0.5 W m−2 (bright artificial indoor lighting) our approach shows an increase in noise, but still faithfully reproduces discrete reflectance spectra over 400 nm–1000 nm. Our approach is limited in its application by LED bandwidth and availability of specific LED wavelengths. However, unlike with conventional spectral cameras, the pixel pitch of the camera itself is not limited, providing higher image resolution than typical high-end multi- and hyperspectral cameras. For sample conditions where LED illumination bands provide suitable spectral information, our LC-MSC is an interesting low-cost alternative approach to spectral imaging.
MULTIFILE
The EU Climate and Energy Policy Framework targets a 40% reduction in Greenhouse Gases (GHGs) emission by companies (when compared to 1990’s values) in 2030 [1]. Preparing for that future, many companies are working to reach climate neutrality in 2030. For water and wastewater treatment plants aeration processes could represent up to 70% of the whole energy consumption of the plant. Thus, a process which must be carefully evaluated if climate neutrality is a target. VortOx is an alternative to reduce power consumption in aeration processes. It is structured to test the applicability of geometrically constrained vortices in a hyperbolic funnel (aka “Schauberger”- funnel) as an innovative aeration technique for this industry. Recent investigations have shown that such systems allow an average of 12x more oxygen transfer coefficients (KLa) than that of comparable methods like air jets or impellers [10]. However, the system has a relatively small hydraulic retention time (HRT), which compromises its standard oxygen transfer ratio (SOTR). Additionally, so far, the system has only been tested in pilot (lab) scale. Vortox will tackle both challenges. Firstly, it will test geometry and flow adaptations to increase HRT keeping the same KLa levels. And secondly, all will be done using a real scale hyperbolic funnel and real effluent from Leeuwarden’s wastewater treatment plant demo-site. If proven feasible, Vortox can be a large step towards climate neutral water and wastewater treatment systems.