The Internet and computers increasingly determine our daily lives. This goes for almost everyone in the Netherlands. Still, it is mostly teenagers who are well informed on how to use all the possibilities of new technologies. They are building a digital world of their own that parents usually know very little about. This booklet intends to inform teachers, parents and other interested parties on what teenagers are actually doing online and how important it is to keep abreast of the new developments that the Internet and computers bring into their world. On the basis of research into these issues in the Netherlands and abroad we attempt to indicate what the digital world of teenagers looks like and how it differs from that of grown-ups. What do they do, exactly, and why? We also look into teenagers’ ICT behaviour and into dangers and abuse of the Internet. Moreover we provide tips for parents and teachers on how to handle certain phenomena. This book does not pretend to provide an exhaustive overview of the digital world of teenagers. It is focused on some important characteristics and parts of that world. It reports on research of the INHOLLAND Centre for eLearning into various aspects of ICT behaviour among teenagers. The research was undertaken in the spring of 2006, focusing mainly on texting, networking, gaming, dangers and abuse on the Internet and the digital relation between school and the home. Ultimately we are especially concerned with the question of what teenagers really learn in their digital world, and how education can profit. This book also addresses that issue.
DOCUMENT
Expectations are high for digital technologies to address sustainability related challenges. While research into such applications and the twin transformation is growing rapidly, insights in the actual daily practices of digital sustainability within organizations is lacking. This is problematic as the contributions of digital tools to sustainability goals gain shape in organizational practices. To bridge this gap, we develop a theoretical perspective on digital sustainability practices based on practice theory, with an emphasis on the concept of sociomateriality. We argue that connecting meanings related to sustainability with digital technologies is essential to establish beneficial practices. Next, we contend that the meaning of sustainability is contextspecific, which calls for a local meaning making process. Based on our theoretical exploration we develop an empirical research agenda.
MULTIFILE
Revolutionary advances in technology have been seen in many industries, with the IIoT being a prime example. The IIoT creates a network of interconnected devices, allowing smooth communication and interoperability in industrial settings. This not only boosts efficiency, productivity, and safety but also provides transformative solutions for various sectors. This research looks into open-source IIoT and edge platforms that are applicable to a range of applications with the aim of finding and developing high-potential solutions. It highlights the effect of open-source IIoT and edge computing platforms on traditional IIoT applications, showing how these platforms make development and deployment processes easier. Popular open-source IIoT platforms include DeviceHive and Thingsboard, while EdgeX Foundry is a key platform for edge computing, allowing IIoT applications to be deployed closer to data sources, thus reducing latency and conserving bandwidth. This study seeks to identify potential future domains for the implementation of IIoT solutions using these open-source platforms. Additionally, each sector is evaluated based on various criteria, such as development requirement analyses, market demand projections, the examination of leading companies and emerging startups in each domain, and the application of the International Patent Classification (IPC) scheme for in-depth sector analysis.
MULTIFILE
Wheelchair users with a spinal cord injury (SCI) or amputation generally lead an inactive lifestyle, associated with reduced fitness and health. Digital interventions and sport and lifestyle applications (E-platforms) may be helpful in achieving a healthy lifestyle. Despite the potential positive effects of E-platforms in the general population, no studies are known investigating the effects for wheelchair users and existing E-platforms can not be used to the same extent and in the same manner by this population due to differences in physiology, body composition, exercise forms and responses, and risk injury. It is, therefore, our aim to adapt an existing E-platform (Virtuagym) within this project by using existing data collections and new data to be collected within the project. To reach this aim we intend to make several relevant databases from our network available for analysis, combine and reanalyze these existing databases to adapt the existing E-platform enabling wheelchair users to use it, evaluate and improve the use of the adapted E-platform, evaluate changes in healthy active lifestyle parameters, fitness, health and quality of life in users of the E-platform (both wheelchair users and general population) and identify determinants of these changes, identify factors affecting transitions from an inactive lifestyle, through an intermediate level, to an athlete level, comparing wheelchair users with the general population, and comparing Dutch with Brazilian individuals. The analysis of large datasets of exercise and fitness data from various types of individuals with and without disabilities, collected over the last years both in the Netherlands and Brazil, is an innovative and potentially fruitful approach. It is expected that the comparison of e.g. wheelchair users in Amsterdam vs. Sao Paulo or recreative athletes vs. elite athletes provides new insight in the factors determining a healthy and active lifestyle.
Wheelchair users with a spinal cord injury (SCI) or amputation generally lead an inactive lifestyle, associated with reduced fitness and health. Digital interventions and sport and lifestyle applications (E-platforms) may be helpful in achieving a healthy lifestyle. Despite the potential positive effects of E-platforms in the general population, no studies are known investigating the effects for wheelchair users and existing E-platforms can not be used to the same extent and in the same manner by this population due to differences in physiology, body composition, exercise forms and responses, and risk injury. It is, therefore, our aim to adapt an existing E-platform (Virtuagym) within this project by using existing data collections and new data to be collected within the project. To reach this aim we intend to make several relevant databases from our network available for analysis, combine and reanalyze these existing databases to adapt the existing E-platform enabling wheelchair users to use it, evaluate and improve the use of the adapted E-platform, evaluate changes in healthy active lifestyle parameters, fitness, health and quality of life in users of the E-platform (both wheelchair users and general population) and identify determinants of these changes, identify factors affecting transitions from an inactive lifestyle, through an intermediate level, to an athlete level, comparing wheelchair users with the general population, and comparing Dutch with Brazilian individuals. The analysis of large datasets of exercise and fitness data from various types of individuals with and without disabilities, collected over the last years both in the Netherlands and Brazil, is an innovative and potentially fruitful approach. It is expected that the comparison of e.g. wheelchair users in Amsterdam vs. Sao Paulo or recreative athletes vs. elite athletes provides new insight in the factors determining a healthy and active lifestyle.
This research is a collaborative project between Water Future, Looop, and MNEXT to address the valorisation of a residual stream that remain after valorisation of whey towards food and feed applications: whey permeate. This permeate is a high-volume but low-quality stream, which is currently used as a filler for mainly animal feed, but with the large amounts produced in NW-Europe it is essential to valorise whey permeate higher in the value chain, for example into a biobased resource which replace fossil-based resources in the chemical industry. To accomplish this, pre-processing steps are necessary to remove minerals. Electrodialysis (ED) can remove unwanted minerals from whey permeate by applying an electric field across its membranes. Using ED, whey permeate is expected to demineralize into a liquid which is suitable for application as biobased resource for various applications. Moreover, the extracted mineral stream can also be reused. This one-year project aims to quantify and optimize the demineralisation of whey permeates using a lab-scale ED setup to make the whey permeate stream suitable for re-use and thus reduce the environmental impact of this stream. The project involves setting up an ED setup provided by Water Future to treat whey permeates supplied by Looop, assessing the suitability of treated permeate as a biobased resource in the chemical industry and processing the produced mineral streams into new biobased resources. The result of this research will demonstrate the use of ED as a valorisation technique for whey permeates and the integration of multiple processes into a valorisation pathway to transform costly whey permeates into value-added products. MNEXT leads the research development, aiming to potentially establish a recycle strategy for resource recovery in the dairy industry. The results will be presented through educational activities, reports, digital platforms, and conferences to transfer knowledge to a broader audience.