A major challenge for disaster scholars and policymakers is to understand the power dimension in response networks, particularly relating to collaboration and coordination. We propose a conceptual framework to study interests and negotiations in and between various civic and professional, response networks drawing on the concepts of “programming” and “switching” proposed by Manuel Castells in his work on the network society. Programming in disaster response refers to the ability to constitute response networks and to program/reprogram them in terms of the goals assigned to the network. Switching is the ability to connect different net-works by sharing common goals and combining resources. We employ these concepts to understand how the US Federal Emergency Management Agency organized its response in the aftermath of Hurricanes Katrina and Sandy. Our conceptual framework can be used both by disaster scholars and policymakers to understand how networked power is constructed and utilized.
DOCUMENT
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-8, 147-154, 2014www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-8/147/2014/doi:10.5194/isprsarchives-XL-8-147-2014Integrated flood disaster management and spatial information: Case studies ofNetherlands and IndiaS. Zlatanova1, T. Ghawana2, A. Kaur2, and J. M. M. Neuvel31Faculty of Architecture, Jullianalaan, TU Delft, 134, 2628BL Delft, the Netherlands2Centre for Disaster Management Studies, Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, New Delhi, P.O. Box-110078, India3Saxion University of Applied Sciences, Risk management, Handelskade 75, 7417 DH Deventer, the NetherlandsKeywords: Floods, Spatial Information Infrastructure, GIS, Risk Management, Emergency Management Abstract. Spatial Information is an integral part of flood management practices which include risk management &emergency response processes. Although risk & emergency management activities have their own characteristics, forexample, related to the time scales, time pressure, activities & actors involved, it is still possible to identify at least onecommon challenge that constrains the ability of risk & emergency management to plan for & manage emergencieseffectively and efficiently i.e. the need for better information. Considering this aspect, this paper explores flood managementin Netherlands& India with an emphasis on spatial information requirements of each system. The paper examines theactivities, actors & information needs related to flood management. Changing perspectives on flood management inNetherlands are studied where additional attention is being paid to the organization and preparation of flood emergencymanagement. Role of different key actors involved in risk management is explored. Indian Flood management guidelines, byNational Disaster Management Authority, are analyzed in context of their history, institutional framework, achievements andgaps. Flood Forecasting System of Central Water Commission of India is also analyzed in context of spatial dimensions.Further, information overlap between risk & emergency management from the perspectives of spatial planners & emergencyresponders and role of GIS based modelling / simulation is analyzed. Finally, the need for an integrated spatial informationstructure is explained & discussed in detail. This examination of flood management practices in the Netherlands and Indiawith an emphasis on the required spatial information in these practices has revealed an increased recognition of the stronginterdependence between risk management and emergency response processes. Consequently, the importance of anintegrated spatial information infrastructure that facilitates the process of both risk and emergency management isaddressed.Conference Paper (PDF, 1063 KB) Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-8, 147-154, 2014www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-8/147/2014/doi:10.5194/isprsarchives-XL-8-147-2014Integrated flood disaster management and spatial information: Case studies ofNetherlands and IndiaS. Zlatanova1, T. Ghawana2, A. Kaur2, and J. M. M. Neuvel31Faculty of Architecture, Jullianalaan, TU Delft, 134, 2628BL Delft, the Netherlands2Centre for Disaster Management Studies, Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, New Delhi, P.O. Box-110078, India3Saxion University of Applied Sciences, Risk management, Handelskade 75, 7417 DH Deventer, the NetherlandsKeywords: Floods, Spatial Information Infrastructure, GIS, Risk Management, Emergency ManagementAbstract. Spatial Information is an integral part of flood management practices which include risk management &emergency response processes. Although risk & emergency management activities have their own characteristics, forexample, related to the time scales, time pressure, activities & actors involved, it is still possible to identify at least onecommon&
MULTIFILE
Humanitarian logistics is regarded as a key area for improved disaster management efficiency and effectiveness. In this study, a multi-objective integrated logistic model is proposed to locate disaster relief centers while taking into account network costs and responsiveness. Because this location problem is NP-hard, we present a genetic approach to solve the proposed model.
DOCUMENT
Natural disasters are a growing concern around the globe. In the Netherlands, water has always played an important role as both friend and enemy. To quickly analyze and visualise possible disaster outcomes has been really difficult. In collaboration with engineering company Tauw we improved this modellingwith an interdisciplinary team of GIS experts, High performance computing and real time visualisation. In a pilot for the city center of Groningen we developed a 3D version of flooding landscape maps (RUG, 2014) after modelling extreme rainfall. With a flooding landscape map you can see at a glance where water isgoing and where problem areas arise in case of extreme rainfall. Any municipality or county can thus quickly determine which measures are to be taken to prevent for example disruption to traffic or flooding damage tobuildings.
DOCUMENT
Business continuity management (BCM) is allang niet meer alleen 'disaster recovery planning '. In dit artikel een schets van de ontwikkelingen van BCM in de afgelopen decennia tot wat het nu is: een holistisch managementproces. Maar inmiddels is er ook sprake van verwevenheid van de onderneming met de omgeving. Een artikel in de Security Management.
MULTIFILE
Most research on hydrological risks focuses either on flood risk or drought risk, whilst floods and droughts are two extremes of the same hydrological cycle. To better design disaster risk reduction (DRR) measures and strategies, it is important to consider interactions between these closely linked phenomena. We show examples of: (a) how flood or drought DRR measures can have (unintended) positive or negative impacts on risk of the opposite hazard; and (b) how flood or drought DRR measures can be negatively impacted by the opposite hazard. We focus on dikes and levees, dams, stormwater control and upstream measures, subsurface storage, migration, agricultural practices, and vulnerability and preparedness. We identify key challenges for moving towards a more holistic risk management approach.
DOCUMENT
Business decisions and business logic are important organizational assets. As transparency is becoming an increasingly important aspect for organizations, business decisions and underlying business logic, i.e., their business rules, must be implemented, in information systems, in such a way that transparency is guaranteed as much as possible. Based on previous research, in this study, we aim to identify how current design principles for business rules management add value in terms of transparency. To do so, a recently published transparency framework is decomposed into criteria, which are evaluated against the current business rules management principles. This evaluation revealed that eight out of twenty-two design principles do not add value to transparency, which should be taken into account when the goal of an organization is to increase transparency. Future research should focus on how to implement the design principles that add to transparency.
DOCUMENT
This essay explores the notion of resilience by providing a theoretical context and subsequently linking it to the management of safety and security. The distinct worlds of international security, industrial safety and public security have distinct risks as well as distinct ‘core purposes and integrities’ as understood by resilience scholars. In dealing with risks one could argue there are three broad approaches: cost-benefit analysis, precaution and resilience. In order to distinguish the more recent approach of resilience, the idea of adaptation will be contrasted to mitigation. First, a general outline is provided of what resilience implies as a way to survive and thrive in the face of adversity. After that, a translation of resilience for the management of safety and security is described. LinkedIn: https://www.linkedin.com/in/juul-gooren-phd-cpp-a1180622/
DOCUMENT
Managing and supporting the collaboration between different actors is key in any organizational context, whether of a hierarchical or a networked nature. In the networked context of ecosystems of service providers and other stakeholders, BPM is faced with different challenges than in a conventional hierarchical model, based on up front consolidation and consensus on the process flows used in collaboration. In networked ecosystems of potential business partners, designing collaboration upfront is not feasible. Coalitions are formed situationally, and sometimes even ad-hoc. This paper presents a number of challenges for conventional BPM in such environments, and explores how declarative process management technology could address them, indicating topics for further research.
MULTIFILE
Why are risk decisions sometimes rather irrational and biased than rational and effective? Can we educate and train vocational students and professionals in safety and security management to let them make smarter risk decisions? This paper starts with a theoretical and practical analysis. From research literature and theory we develop a two-phase process model of biased risk decision making, focussing on two critical professional competences: risk intelligence and risk skill. Risk intelligence applies to risk analysis on a mainly cognitive level, whereas risk skill covers the application of risk intelligence in the ultimate phase of risk decision making: whether or not a professional risk manager decides to intervene, how and how well. According to both phases of risk analysis and risk decision making the main problems are described and illustrated with examples from safety and security practice. It seems to be all about systematically biased reckoning and reasoning.
DOCUMENT