Purpose: This study aims to capture the complex clinical reasoning process during tailoring of exercise and dietary interventions to adverse effects and comorbidities of patients with ovarian cancer receiving chemotherapy. Methods: Clinical vignettes were presented to expert physical therapists (n = 4) and dietitians (n = 3). Using the think aloud method, these experts were asked to verbalize their clinical reasoning on how they would tailor the intervention to adverse effects of ovarian cancer and its treatment and comorbidities. Clinical reasoning steps were categorized in questions raised to obtain additional information; anticipated answers; and actions to be taken. Questions and actions were labeled according to the evidence-based practice model. Results: Questions to obtain additional information were frequently related to the patients’ capacities, safety or the etiology of health issues. Various hypothetical answers were proposed which led to different actions. Suggested actions by the experts included extensive monitoring of symptoms and parameters, specific adaptations to the exercise protocol and dietary-related patient education. Conclusions: Our study obtained insight into the complex process of clinical reasoning, in which a variety of patient-related variables are used to tailor interventions. This insight can be useful for description and fidelity assessment of interventions and training of healthcare professionals.
MULTIFILE
Objective. Clinicians may use implicit or explicit motor learning approaches to facilitatemotor learning of patients with stroke. Implicit motor learning approaches have shown promising results in healthy populations. The purpose of this study was to assess whether an implicit motor learning walking intervention is more effective compared with an explicit motor learning walking intervention delivered at home regarding walking speed in people after stroke in the chronic phase of recovery. Methods. This randomized, controlled, single-blind trial was conducted in the home environment. The 79 participants, who were in the chronic phase after stroke (age = 66.4 [SD = 11.0] years; time poststroke = 70.1 [SD = 64.3] months; walking speed = 0.7 [SD = 0.3] m/s; Berg Balance Scale score = 44.5 [SD = 9.5]), were randomly assigned to an implicit (n = 38) or explicit (n = 41) group. Analogy learning was used as the implicit motor learning walking intervention, whereas the explicit motor learning walking intervention consisted of detailed verbal instructions. Both groups received 9 training sessions (30 minutes each), for a period of 3 weeks, targeted at improving quality of walking. The primary outcome was walking speed measured by the 10-MeterWalk Test at a comfortable walking pace. Outcomes were assessed at baseline, immediately after intervention, and 1 month postintervention. Results. No statistically or clinically relevant differences between groups were obtained postintervention (between-group difference was estimated at 0.02 m/s [95% CI = −0.04 to 0.08] and at follow-up (between-group difference estimated at −0.02 m/s [95% CI = −0.09 to 0.05]). Conclusion. Implicit motor learning was not superior to explicit motor learning to improve walking speed in people after stroke in the chronic phase of recovery. Impact. To our knowledge, this is the first study to examine the effects of implicit compared with explicit motor learning on a functional task in people after stroke. Results indicate that physical therapists can use (tailored) implicit and explicit motor learning strategies to improve walking speed in people after stroke who are in the chronic phase of recovery.