Battery energy storage (BES) can provide many grid services, such as power flow management to reduce distribution grid overloading. It is desirable to minimise BES storage capacities to reduce investment costs. However, it is not always clear how battery sizing is affected by battery siting and power flow simultaneity (PFS). This paper describes a method to compare the battery capacity required to provide grid services for different battery siting configurations and variable PFSs. The method was implemented by modelling a standard test grid with artificial power flow patterns and different battery siting configurations. The storage capacity of each configuration was minimised to determine how these variables affect the minimum storage capacity required to maintain power flows below a given threshold. In this case, a battery located at the transformer required 10–20% more capacity than a battery located centrally on the grid, or several batteries distributed throughout the grid, depending on PFS. The differences in capacity requirements were largely attributed to the ability of a BES configuration to mitigate network losses. The method presented in this paper can be used to compare BES capacity requirements for different battery siting configurations, power flow patterns, grid services, and grid characteristics.
DOCUMENT
Humanitarian logistics is regarded as a key area for improved disaster management efficiency and effectiveness. In this study, a multi-objective integrated logistic model is proposed to locate disaster relief centers while taking into account network costs and responsiveness. Because this location problem is NP-hard, we present a genetic approach to solve the proposed model.
DOCUMENT
Spatial decisions on distribution channel layout involve the layout of the transport and storage system between production and consumption as well as the selection of distribution centre locations. Both are strategic company decisions to meet logistics challenges, i.e. delivering the right product at the right location on time. In this paper we study the main factors and sub factors that drive spatial decisions on distribution channel layout. The current literature has a strong focus on normative approach and lacks descriptive research into these factors. In the second part of the study, we investigated the importance of the factors. Best-Worst Method (BWM) has been used to calculate the factor weights. BWM provides consistent results and requires fewer comparisons than ‘matrix based’ methods. An online survey was used to collect the data. According to total sample of respondents, the most important factors are ‘Logistics costs’, ‘Service level’ and ‘Demand level’. Logistics costs being the most important factor is in line with Supply Chain Management literature. Logistics experts consider ‘Customer demand’ as the second most important factor, whereas decision makers consider ‘Service level’ the second most important factor. A limitation of the research is that the majority of respondents are from Europe and the USA. For future research we suggest to test how respondents from non-Western countries value the importance of several factors.
DOCUMENT
As electric loads in residential areas increase as a result of developments in the areas of electric vehicles, heat pumps and solar panels, among others, it is becoming increasingly likely that problems will develop in the electricity distribution grid. This research will analyse different solutions to such problems to determine Using a model developed as part of this project, we will simulate various cases to determine under which circumstances load balancing at a community-level is more (cost) effective than alternative solutions (e.g. grid reinforcement and/or household batteries).
The purpose of this project was to create a roadmap with selected mechanisms to assist destination management organisations to optimize the benefits generated by tourism for their destination communities and ensure that it is shared equitably. By providing tools to identify and address inequality in terms of access to the benefits and value tourism generates, it is envisaged that a more equitable tourism model can be implemented leading to the fair distribution of benefits in destination communities, potentially increasing the value for previously excluded or underserved groups. To produce the roadmap, the study team will explore the range of challenges that hinder the equitable distribution of tourism-induced benefits in destinations as well as the enabling factors that influence the extent to which this is achieved. The central question the research team has set out to answer is the following: What does an equitable tourism model look like for destination communities?Societal issueHowever, while those directly involved in tourism will gain the most, the burden of hosting visitors is widely felt by local communities. This imbalance has, unsurprisingly, sparked civil mobilisations and protests in destinations around the world. It’s clear that placemaking and benefit-sharing must be part of the future of destination management to maintain public support. This project addressed issues around equity (environmental, economic, spatial, cultural and tourism experience). In line with the intentions set out in the CELTH Agenda Conscious Destinations.Benefit to societyBased on 25 case studies around 40 mechanisms were identified that can grow or better distribute the value from tourism, so that more people in destination communities benefit. These mechanisms are real-world practices already in use. DMOs and NTOs can consider introducing the mechanisms that best fit their destination context, pulling levers such as: taxes and revenue sharing, business incubation and training, licencing and zoning, community enterprises and volunteering, and product development..This report also outlines a pathway to an Equity-Driven Management (EDM) approach, which is grounded in participatory decision-making principles and aims to create a more equitable tourism system by strengthening the hand of destination governance and retaining control of local resources.Collaborative partnersNBTC, the Travel Foundation, Destination Think, CELTH, ETFI, HZ.
The integration of renewable energy resources, controllable devices and energy storage into electricity distribution grids requires Decentralized Energy Management to ensure a stable distribution process. This demands the full integration of information and communication technology into the control of distribution grids. Supervisory Control and Data Acquisition (SCADA) is used to communicate measurements and commands between individual components and the control server. In the future this control is especially needed at medium voltage and probably also at the low voltage. This leads to an increased connectivity and thereby makes the system more vulnerable to cyber-attacks. According to the research agenda NCSRA III, the energy domain is becoming a prime target for cyber-attacks, e.g., abusing control protocol vulnerabilities. Detection of such attacks in SCADA networks is challenging when only relying on existing network Intrusion Detection Systems (IDSs). Although these systems were designed specifically for SCADA, they do not necessarily detect malicious control commands sent in legitimate format. However, analyzing each command in the context of the physical system has the potential to reveal certain inconsistencies. We propose to use dedicated intrusion detection mechanisms, which are fundamentally different from existing techniques used in the Internet. Up to now distribution grids are monitored and controlled centrally, whereby measurements are taken at field stations and send to the control room, which then issues commands back to actuators. In future smart grids, communication with and remote control of field stations is required. Attackers, who gain access to the corresponding communication links to substations can intercept and even exchange commands, which would not be detected by central security mechanisms. We argue that centralized SCADA systems should be enhanced by a distributed intrusion-detection approach to meet the new security challenges. Recently, as a first step a process-aware monitoring approach has been proposed as an additional layer that can be applied directly at Remote Terminal Units (RTUs). However, this allows purely local consistency checks. Instead, we propose a distributed and integrated approach for process-aware monitoring, which includes knowledge about the grid topology and measurements from neighboring RTUs to detect malicious incoming commands. The proposed approach requires a near real-time model of the relevant physical process, direct and secure communication between adjacent RTUs, and synchronized sensor measurements in trustable real-time, labeled with accurate global time-stamps. We investigate, to which extend the grid topology can be integrated into the IDS, while maintaining near real-time performance. Based on topology information and efficient solving of power flow equation we aim to detect e.g. non-consistent voltage drops or the occurrence of over/under-voltage and -current. By this, centrally requested switching commands and transformer tap change commands can be checked on consistency and safety based on the current state of the physical system. The developed concepts are not only relevant to increase the security of the distribution grids but are also crucial to deal with future developments like e.g. the safe integration of microgrids in the distribution networks or the operation of decentralized heat or biogas networks.