This report has been established within the Flexiheat project. Flexiheat has focused on increasing flexibility in district heating systems. The intelligent district heating network is a dynamic network: an open network where different waste heat and renewable energy sources are connected, that has multiple producers and groups of consumers and facilitates the connection between different energy infrastructures (gas, heat and electricity). Eventually this will lead to an optimal deployment of the available heat sources and an increased cost-efficiency of district heating. Flexiheat aims to develop new concepts for these intelligent, flexible district heating networks. One of the strategies is to allow third party access to the network. A smart control system is developed to manage the heat flows across the network. This system makes use of dynamic pricing. In this exploration the concept of third party access in relation to the Flexiheat project will be discussed. The development of new business and price models based on the Flexiheat approach has led to an analysis of possible alternative price models for consumers.
DOCUMENT
Community energy can be conceptualized as a social movement, which aims to develop a sustainable, democratic, and localist energy system. Community energy organizations often take the form of cooperatives and strive for a high level of participation at the neighborhood level. Recently, community energy initiatives took on the challenge to develop neighborhood heating projects, which are citizen-led and sustainable. District heating (DH) projects are characterized by costly investments, a substantial overhaul of local infrastructure, and large installations for heat production. Furthermore, specialized technical knowledge is needed for the design of DH-systems.In the Netherlands, we studied four cases where local energy cooperatives developed such citizen-led neighborhood heating projects. Our primary research question is what constitutes a citizen-led or citizen-supported DH-project? We focus on four themes: first, the internal organization of the CH-project; second its outreach to local citizens; third, the role of technical knowledge and technology choices; fourth, the changing role of municipalities in the local energy transition.We developed a theoretical framework that consists of three main networks: the internal network, constituted by the local energy initiative itself and its surrounding neighborhood; the external network, which is comprised of local and regional governments as well as private companies; and the material network, referring to technological and physical aspects.In the discussion, we situate our findings against a broader European background. We conclude that a democratic structure, transparency of decision making, and a high level of activities to involve the neighborhood are key success factors. Nevertheless, the development of a community DH-project is a time-consuming process that takes a high toll on the participants. We observed that the remunicipalization trend is emerging in the Netherlands. Regarding technology choices, we found that the DH-initiatives became quite knowledgeable on technical issues and stimulated the application of new technologies such as small-scale aquathermal energy. However, in some cases the choice for a low-cost solution led to concessions to the sustainability of the proposed solutions.
DOCUMENT
The sustainable energy transition asks for new and innovative solutions in the way society, government, energy market and clients (end users) approach energy distribution and consumption. The energy transition provides great opportunity to develop innovative solutions where in the dense built environment district heating and cooling are being strongly advocated.Traditionally, the energy systems in urban districts have been regulated by a top-down approach. With the rise of local and distributed sustainable sources for urban heating and cooling, the complexity of the heat/cold chain is increasing. Therefore, an organic and bottom-up approach is being requested, where the public authorities have a facilitating and/or directive role. There is a need for a new and open framework for collaboration between stakeholders. A framework that provides insight into the integral consideration of heating and cooling solutions on district level in terms of: organisation, technology and economy (OTE). This research therefore focuses on developing this integral framework towards widely supported heating and cooling solutions among district stakeholders.Through in-depth interviews, workshops and focus groups discussions, relevant stakeholders in local district heating/cooling of varying backgrounds and expertise have been consulted. This has led to two pillars in a framework. Firstly the definition of Key Success Factors and Key Performance Indicators to evaluate technical solutions in light of the respective context. Secondly, an iterative decision making process among district stakeholders where technical scenarios, respective financial business cases and market organisation are being negotiated. Fundamental proposition of the framework is the recurrent interaction between OTE factors throughout the entire decision making process. In order to constantly assure broad-based support, the underlying nature of possible barriers for collaboration are identified in a stakeholder matrix, informing a stakeholder strategy. It reveals an open insight of the interests, concerns, and barriers among all stakeholders, where solutions can be developed effectively.
DOCUMENT
Community energy can be conceptualized as a social movement, which aims to develop a sustainable, democratic, and localist energy system. Increasingly, community energy initiatives aim to develop citizen-led heating projects. District heating projects are characterized by costly investments, a substantial overhaul of local infrastructure, large installations for heat production, and require specialized technical knowledge. Based on Social Movement Theory, we developed a theoretical framework consisting of three main networks: internal, external, and material.In the Netherlands, we studied four cases of citizen-led heating projects. Our primary research question is what a citizen-led DH-project constitutes. We focus on four themes: the internal organization of the CH-project; its outreach to local citizens; the role of technical knowledge and technology choices; the changing role of municipalities in the local energy transition.We situate our findings against a broader European background. We conclude that a democratic structure, transparency of decision making, and a high level of neighborhood participation are key success factors. However, in some cases the choice for a low-cost solution led to concessions to the sustainability of the proposed solutions.
DOCUMENT
Publicatie naar aanleiding van de door Stadslab European Urban Design Laboratory georganiseerde Master Class met als thematiek het ontwerpen van een Innovative District voor de Poolse stad Lublin. De Master Class werd gevolgd door 8 internationale deelnemers en stond onder supervisie van Didier Rebois (Europan, Parijs), Marc Glaudemans (Fontys) en Juliette van der Meijden (Fontys)
DOCUMENT
Lessons learned on the progress towards 4th generation district heating (4DHC) are presented from 6 pilot implementation projects in the UK, Ireland, Belgium, France, and the Netherlands (HeatNet project). The pilots have implemented the infrastructure for district heating from various (waste) heat and renewable sources to reduce CO2 emissions. With the development of long term road maps, progress is made towards the role out of 4DHC in the regions. The pilots have a different level of experience with district heating and transnational learning is specifically addressed. Purpose of the evaluation of the pilots is to give local authorities insight into barriers and solutions and the way they are closely linked to stakeholders in their geographical, politicaland cultural context in NWE. To do this, the financial, regulatory and organisational barriers the pilots face and possible solutions that were shared between the pilots are analysed in the context of system innovation. Differences in national and regional contexts have been analysed to be able to generalise solutions to a level they can be used in a different context. We will confront the pilot’s development with best and worst practice from literature and score Key Success Factors.
MULTIFILE
District heating (DH) has a major potential to increase the efficiency, security, and sustainability of energy management at the community scale. However, there is a huge challenge for decision makers due to the lack of knowledge about thermal energy demand during a year. https://www.mdpi.com/1996-1073/14/17/5462
MULTIFILE
Current methods for energy diagnosis in heating, ventilation and air conditioning (HVAC) systems are not consistent with process and instrumentation diagrams (P&IDs) as used by engineers to design and operate these systems, leading to very limited application of energy performance diagnosis in practice. In a previous paper, a generic reference architecture – hereafter referred to as the 4S3F (four symptoms and three faults) framework – was developed. Because it is closely related to the way HVAC experts diagnose problems in HVAC installations, 4S3F largely overcomes the problem of limited application. The present article addresses the fault diagnosis process using automated fault identification (AFI) based on symptoms detected with a diagnostic Bayesian network (DBN). It demonstrates that possible faults can be extracted from P&IDs at different levels and that P&IDs form the basis for setting up effective DBNs. The process was applied to real sensor data for a whole year. In a case study for a thermal energy plant, control faults were successfully isolated using balance, energy performance and operational state symptoms. Correction of the isolated faults led to annual primary energy savings of 25%. An analysis showed that the values of set probabilities in the DBN model are not outcome-sensitive. Link to the formal publication via its DOI https://doi.org/10.1016/j.enbuild.2020.110289
DOCUMENT
This report relates to the Horizon 2020 project entitled ‘Making City’. The report was conducted by the Hanze University of Applied Sciences to the benefit of theMunicipality of Groningen and other consortium partners in the Making City project and addresses the legal impediments that may arise when creating and achieving a Positive Energy District (PED). In doing so, it specifically addresses the situation in the city of Groningen and the legal framework of the Netherlands.This report highlights legal developments of (upcoming) EU and mostly Dutch legislation related to a PED, such as the Collective Heat and Supply Act (Warmtewet) and the Environmental Act. Moreover, smart contracts used in the Block chain technology is discussed and a chapter on Intellectual Property legislation is included which becomes relevant when using new innovations and technologies. Furthermore, it identifies certain legal barriers that emerged in the establishment of the Groningen PED.
DOCUMENT
On the 11th of March, just a few days aheadof COVID – 19, the team working on the ELISEUse Case “Comparative analysis of differentmethodologies and datasets for EnergyPerformance Labelling of buildings” organizedthe 2nd European SimStadt workshop atSaxion University of Applied Sciences inEnschede, hosted by the Saxion researchgroup Sustainable Building Technology (SBT).SimStadt is a workflow-driven urban energysimulation platform for CityGML city modelsenabling solar potential- , heating demand- ,environmental- and district heating networkanalysis. Linking urban simulation platformsto CityGML models allows the use ofgeospatial information to enrich data modelsto be used for scenario analysis, e.g. relatedto energy transition. However, the rapid andwidespread development of applications andtools requires the European Commission tofocus on harmonization measures for dataformats.
MULTIFILE