This report has been established within the Flexiheat project. Flexiheat has focused on increasing flexibility in district heating systems. The intelligent district heating network is a dynamic network: an open network where different waste heat and renewable energy sources are connected, that has multiple producers and groups of consumers and facilitates the connection between different energy infrastructures (gas, heat and electricity). Eventually this will lead to an optimal deployment of the available heat sources and an increased cost-efficiency of district heating. Flexiheat aims to develop new concepts for these intelligent, flexible district heating networks. One of the strategies is to allow third party access to the network. A smart control system is developed to manage the heat flows across the network. This system makes use of dynamic pricing. In this exploration the concept of third party access in relation to the Flexiheat project will be discussed. The development of new business and price models based on the Flexiheat approach has led to an analysis of possible alternative price models for consumers.
DOCUMENT
Community energy can be conceptualized as a social movement, which aims to develop a sustainable, democratic, and localist energy system. Community energy organizations often take the form of cooperatives and strive for a high level of participation at the neighborhood level. Recently, community energy initiatives took on the challenge to develop neighborhood heating projects, which are citizen-led and sustainable. District heating (DH) projects are characterized by costly investments, a substantial overhaul of local infrastructure, and large installations for heat production. Furthermore, specialized technical knowledge is needed for the design of DH-systems.In the Netherlands, we studied four cases where local energy cooperatives developed such citizen-led neighborhood heating projects. Our primary research question is what constitutes a citizen-led or citizen-supported DH-project? We focus on four themes: first, the internal organization of the CH-project; second its outreach to local citizens; third, the role of technical knowledge and technology choices; fourth, the changing role of municipalities in the local energy transition.We developed a theoretical framework that consists of three main networks: the internal network, constituted by the local energy initiative itself and its surrounding neighborhood; the external network, which is comprised of local and regional governments as well as private companies; and the material network, referring to technological and physical aspects.In the discussion, we situate our findings against a broader European background. We conclude that a democratic structure, transparency of decision making, and a high level of activities to involve the neighborhood are key success factors. Nevertheless, the development of a community DH-project is a time-consuming process that takes a high toll on the participants. We observed that the remunicipalization trend is emerging in the Netherlands. Regarding technology choices, we found that the DH-initiatives became quite knowledgeable on technical issues and stimulated the application of new technologies such as small-scale aquathermal energy. However, in some cases the choice for a low-cost solution led to concessions to the sustainability of the proposed solutions.
DOCUMENT
Publicatie naar aanleiding van de door Stadslab European Urban Design Laboratory georganiseerde Master Class met als thematiek het ontwerpen van een Innovative District voor de Poolse stad Lublin. De Master Class werd gevolgd door 8 internationale deelnemers en stond onder supervisie van Didier Rebois (Europan, Parijs), Marc Glaudemans (Fontys) en Juliette van der Meijden (Fontys)
DOCUMENT
The key societal problem addressed by the EmPowerED consortium is the urgent need to accelerate and scale up the development of Positive Energy Districts (PEDs). Carbon neutral heating and cooling is a core element of the design of Positive Energy Districts (PEDS). However, many Dutch heat transition projects run behind schedule and are not compatible with this future vision of PEDs, making the heat transition a key factor in PED realization and upscaling. In this heat transition and the transition to PEDs, citizen engagement and support is a key societal factor and citizens need to be an integral part of the decision-making process on the realization of PEDs. Furthermore, technical, regulatory and financial uncertainties hamper the ability of decision makers to create PED system designs that have citizen support. Such system designs require a deep understanding of the relevant social, spatial, governance, legal, financial, and technical factors, and their interactions in PED system designs.