Graphs are ubiquitous. Many graphs, including histograms, bar charts, and stacked dotplots, have proven tricky to interpret. Students’ gaze data can indicate students’ interpretation strategies on these graphs. We therefore explore the question: In what way can machine learning quantify differences in students’ gaze data when interpreting two near-identical histograms with graph tasks in between? Our work provides evidence that using machine learning in conjunction with gaze data can provide insight into how students analyze and interpret graphs. This approach also sheds light on the ways in which students may better understand a graph after first being presented with other graph types, including dotplots. We conclude with a model that can accurately differentiate between the first and second time a student solved near-identical histogram tasks.
Students and lecturers share educational experiences, each in their role: Students as part of their learning context and lecturers as part of their work environment. But how much of their experiences are similar? A questionnaire was developed to provide insight into the experiences of research integration of undergraduate students (N = 2336) and lecturers (N = 379). For measurements, the Research Attitudes in Vocational Education Questionnaire (RAVE-Q), and Experience in Research Integration scale were applied to the student survey design. For lecturers, all items of the student surveys were rephrased into items related to lecturers’ perceptions of their students’ attitudes and experiences. The findings show that students and lecturers share perceptions about the role of research in their related vocational field and about research integration. However, important cognitive and affective differences were found between students and lecturers regarding research practice. Implications for further research and educational design will be discussed.
Background: The dynamics of maternal and newborn care challenge midwifery education programs to keep up-to-date. To prepare for their professional role in a changing world, role models are important agents for student learning. Objective: To explore the ways in which Dutch and Icelandic midwifery students identify role models in contemporary midwifery education. Methods: We conducted a descriptive, qualitative study between August 2017 and October 2018. In the Netherlands, 27 students participated in four focus groups and a further eight in individual interviews. In Iceland, five students participated in one focus group and a further four in individual interviews. All students had clinical experience in primary care and hospital. Data were analyzed using inductive content analysis. Results: During their education, midwifery students identify people with attitudes and behaviors they appreciate. Students assimilate these attitudes and behaviors into a role model that represents their ‘ideal midwife’, who they can aspire to during their education. Positive role models portrayed woman-centered care, while students identified that negative role models displayed behaviors not fitting with good care. Students emphasized that they learnt not only by doing, they found storytelling and observing important aspects of role modelling. Students acknowledged the impact of positive midwifery role models on their trust in physiological childbirth and future style of practice. Conclusion: Role models contribute to the development of students’ skills, attitudes, behaviors, identity as midwife and trust in physiological childbirth. More explicit and critical attention to how and what students learn from role models can enrich the education program.
KnowledgeFlows in Marine Spatial Planning - Sharing Innovation in Higher Education(KnowledgeFlows) aims at further enforcing the European higher education community to meet the growing demands for knowledge, skills and innovation within the still emerging field of marine or maritime spatial planning (MSP).Marine Spatial Planning (MSP) is an emerging governmental approach towards a more effective use of the sea. MSP is of great interest in Europe and can be considered a societal process to balance conflicting interests of maritime stakeholders and the marine environment. Many different activities take place at sea, ranging from shipping, fisheries, to offshore wind energy activities. Simultaneously, new and evolving policies focus on strategies to integrate different marine demands in space and resources. MSP is now legally binding in the EU and is much needed approach to manage and organize the use of the sea, while also protecting the environment.KnowledgeFlows will contribute to the development of new innovative approaches to higher education and training on MSP by means of problem-based learning schemes, transdisciplinary collaboration, and advanced e-learning concepts. KnowledgeFlows builds on results from former project outputs (Erasmus+ Strategic Partnership for Marine Spatial Planning SP-MSP), such as the online learning platform MSP Education Arena (https://www.sp-msp.uol.de).The strategic partnership consists of a transnational network of experts both in research and in practice based in the north Atlantic, Baltic Sea and North Sea Regions including Aalborg University (DK, lead partner), The University of Oldenburg (D), the University of Liverpool (U.K.), the University of Nantes (F), the Leibniz Institute for Baltic Sea Research (D), the Breda University of Applied Sciences (NL), University of Ulster (U.K.), and the Finnish Environment Institute (FI). Gothenburg University, also being a higher education organisation, will be associated partner.Furthermore, three international organisations, the Marine Spatial Planning Research Network, the Baltic inter-governmental VASAB and the pan-Nordic Nordregio will be involved in the partnership as associated organisations deeply rooted in the MSP community of practice.The further improvement of curricula, exchange of knowledge and experts, and transparency and recognition of learning outcomes to reach higher qualifications in MSP are key components of KnowledgeFlows. A mutual learning environment for MSP higher education will enable problem-driven innovation among students and their educators from research and governance also involving stakeholders. Related activities on intellectual outputs, multiplier events and lecturing will be carried out by all participating organisations.The intellectual outputs are related to three major contributions to the European higher education landscape:1) an advanced level international topical MSP course (Step-up MSP)2) digital learning facilities and tools (MSP Education Arena)3) designing problem-based learning in MSP (MSP directory)The advanced level inter-institutional topical MSP course will include different teaching and training activities within a problem-based learning environment. Digital learning facilities enabling communication and training will include a further enrichment of the MSP Education Arena platform for students, practitioners and lecturers for including modules forcollaborate learning activities, documentation and dissemination, mobilisation/recruitment, thesis opportunities, placements/internships. Designing problem-based learning in MSP will include topics as; the design of didactics and methods; guidance for lecturers, supervisors and students; evaluation and quality assurance; assessment.Five multiplier events back to back or as part of conferences within the MSP community will be organised to mainstream the outputs and innovative MSP didactics among other universities and institutions.Different teaching and training activities feeds into the intellectual output activities, which will include serious gaming sessions (MSP Challenge (http://www.mspchallenge.info/) and others), workshops, excursions, courses/classes as well as a conference with a specific focus on facilitating the exchange of innovative ideas and approaches among students at bachelor´s, master´s and doctoral level and the MSP community of practice.Project management meetings (twice a year) will assure coherence in project planning and implementation. As the core focus of the strategic partnership is on collaboration, mutual learning, and innovation among educators, students, and practitioners in order to meet actual and future needs regarding knowledge exchange and training within the MSP community, the project will be designed to have long lasting effects.Results
Circular agriculture is an excellent principle, but much work needs to be done before it can become common practice in the equine sector. In the Netherlands, diversification in this sector is growing, and the professional equine field is facing increasing pressure to demonstrate environmentally sound horse feeding management practices and horse owners are becoming more aware of the need to manage their horses and the land on which they live in a sustainable manner. Horses should be provided with a predominantly fibre-based diet in order to mimic their natural feeding pattern, however grazing impacts pasture differently, with a risk of overgrazing and soil erosion in equine pastures. Additionally, most horses receive supplements not only with concentrates and oils, but also with minerals. Though the excess minerals are excreted in the manure of horses, these minerals can accumulate in the soil or leach to nearby waterways and pollute water resources. Therefore, the postdoc research aims to answer the main question, “What horse feeding practices and measurements are needed to reduce and prevent environmental pollution in the Netherlands?” The postdoc research is composed of two components; a broad survey-based study which will generate quantitative data on horse feeding management and will also obtain qualitative data on the owners’ engagement or willingness of horse owners to act sustainably. Secondly, a field study will involve the collection of detailed data via visits to horse stables in order to gather data for nutritional analysis and to collect fecal samples for mineral analysis. Students, lecturers and partners will actively participate in all phases of the planned research. This postdoc research facilitates learning and intends to develop a footprint calculator for sustainable horse feeding to encompass the complexity of the equine sector, and to improve the Equine Sports and Business curriculum.