Abstract Background: We studied the relationship between trismus (maximum interincisor opening [MIO] ≤35 mm) and the dose to the ipsilateral masseter muscle (iMM) and ipsilateral medial pterygoid muscle (iMPM). Methods: Pretreatment and post-treatment measurement of MIO at 13 weeks revealed 17% of trismus cases in 83 patients treated with chemoradiation and intensity-modulated radiation therapy. Logistic regression models were fitted with dose parameters of the iMM and iMPM and baseline MIO (bMIO). A risk classification tree was generated to obtain optimal cut-off values and risk groups. Results: Dose levels of iMM and iMPM were highly correlated due to proximity. Both iMPM and iMM dose parameters were predictive for trismus, especially mean dose and intermediate dose volume parameters. Adding bMIO, significantly improved Normal Tissue Complication Probability (NTCP) models. Optimal cutoffs were 58 Gy (mean dose iMPM), 22 Gy (mean dose iMM) and 46 mm (bMIO). Conclusions: Both iMPM and iMM doses, as well as bMIO, are clinically relevant parameters for trismus prediction.
DOCUMENT
Purpose/Objective: Most dose-escalation trials in glioblastoma patients integrate the escalated dose throughout the standard course by targeting a specific subvolume. We hypothesize that anatomical changes during irradiation may affect the dose coverage of this subvolume for both proton- and photon-based radiotherapy. Material and Methods: For 24 glioblastoma patients a photon- and proton-based dose escalation treatment plan (of 75 Gy/30 fr) was simulated on the dedicated radiotherapy planning MRI obtained before treatment. The escalated dose was planned to cover the resection cavity and/or contrast enhancing lesion on the T1w post-gadolinium MRI sequence. To analyze the effect of anatomical changes during treatment, we evaluated on an additional MRI that was obtained during treatment the changes of the dose distribution on this specific high dose region. Results: The median time between the planning MRI and additional MRI was 26 days (range 16–37 days). The median time between the planning MRI and start of radiotherapy was relatively short (7 days, range 3–11 days). In 3 patients (12.5%) changes were observed which resulted in a substantial deterioration of both the photon and proton treatment plans. All these patients underwent a subtotal resection, and a decrease in dose coverage of more than 5% and 10% was observed for the photon- and proton-based treatment plans, respectively. Conclusion: Our study showed that only for a limited number of patients anatomical changes during photon or proton based radiotherapy resulted in a potentially clinically relevant underdosage in the subvolume. Therefore, volume changes during treatment are unlikely to be responsible for the negative outcome of dose-escalation studies.
DOCUMENT
PURPOSE: Advanced radiotherapy treatments require appropriate quality assurance (QA) to verify 3D dose distributions. Moreover, increase in patient numbers demand efficient QA-methods. In this study, a time efficient method that combines model-based QA and measurement-based QA was developed; i.e., the hybrid-QA. The purpose of this study was to determine the reliability of the model-based QA and to evaluate time efficiency of the hybrid-QA method.METHODS: Accuracy of the model-based QA was determined by comparison of COMPASS calculated dose with Monte Carlo calculations for heterogeneous media. In total, 330 intensity modulated radiation therapy (IMRT) treatment plans were evaluated based on the mean gamma index (GI) with criteria of 3%∕3mm and classification of PASS (GI ≤ 0.4), EVAL (0.4 < GI > 0.6), and FAIL (GI ≥ 0.6). Agreement between model-based QA and measurement-based QA was determined for 48 treatment plans, and linac stability was verified for 15 months. Finally, time efficiency improvement of the hybrid-QA was quantified for four representative treatment plans.RESULTS: COMPASS calculated dose was in agreement with Monte Carlo dose, with a maximum error of 3.2% in heterogeneous media with high density (2.4 g∕cm(3)). Hybrid-QA results for IMRT treatment plans showed an excellent PASS rate of 98% for all cases. Model-based QA was in agreement with measurement-based QA, as shown by a minimal difference in GI of 0.03 ± 0.08. Linac stability was high with an average GI of 0.28 ± 0.04. The hybrid-QA method resulted in a time efficiency improvement of 15 min per treatment plan QA compared to measurement-based QA.CONCLUSIONS: The hybrid-QA method is adequate for efficient and accurate 3D dose verification. It combines time efficiency of model-based QA with reliability of measurement-based QA and is suitable for implementation within any radiotherapy department.
DOCUMENT