The question of how to design climate-resilient landscapes plays a major role in the European projects in which the green university has been involved, such as Future Cities and F:ACTS!. These are projects in which various European organizations, government authorities and universities have joined forces to find an answer to climate-related issues. Van Hall Larenstein also collaborates with Almere, a relatively new Dutch municipality that is changing rapidly and that prioritizes climate resilience in its development. Over the years there has been a clear development in climate-adaptive planning, both in education and in practice.
MULTIFILE
Due to climate change the frequency of extreme precipitation increases. To reduce the risk of damage by flooding, municipalities will need to retrofit urban areas in a climate-resilient way. To justify this investment, they need insight in possibilities and costs of climate-resilient urban street designs. This chapter focused on how to retrofit characteristic (Dutch) typologies of urban residential areas. For ten cases alternative street layouts were designed with a determination of the life cycle costs and benefits. All designs are resilient to extreme rain events. The results show that most flat urban typologies can easily be retrofitted in a climate-resilient way without additional costs compared to the standard way of retrofitting. Climate proofing sloping areas are highly dependent on the situation downstream. When there is no space downstream to divert the water into waterways or parks, costs to provide storage easily rise above traditional levels for retrofitting. In addition to reducing flood risk, for each case one variant includes resilience to extreme heat events making use of green. The life cycle costs and benefits of the green variants showed that especially green designs in high-density urban areas result in a better value for money.
MULTIFILE
With increase in awareness of the risks posed by climate change and increasingly severe weather events, attention has turned to the need for urgent action. While strategies to respond to flooding and drought are well-established, the effects - and effective response - to heat waves is much less understood. As heat waves become more frequent, longer-lasting and more intense, the Cool Towns project provides cities and municipalities with the knowledge and tools to become heat resilient. The first step to developing effective heat adaptation strategies is identifying which areas in the city experience the most heat stress and who are the residents most affected. This enables decision-makers to prioritise heat adaptation measures and develop a city-wide strategy.The Urban Heat Atlas is the result of four years of research. It contains a collection of heat related maps covering more than 40,000 hectares of urban areas in ten municipalities in England, Belgium, The Netherlands, and France. The maps demonstrate how to conduct a Thermal Comfort Assessment (TCA) systematically to identify heat vulnerabilities and cooling capacity in cities to enable decision-makers to set priorities for action. The comparative analyses of the collated maps also provide a first overview of the current heat resilience state of cities in North-Western Europe.
Cities: Action-perspectives for a climate-proof, drought-resilient, and water-sensitive built environment Recurring droughts severely impacted the Dutch built Environment , causing financial, environmental, and social effects. Climate change and urban developments are expected to aggravate this. Although municipalities recognize drought as critical risk, few have prepared for it. This is due to a lack of understanding of the urban water balance under drought and the vulnerability of urban water use(r)s, ambiguity in role and responsibility, and missing action-perspectives. Thirsty Cities aims to address this by developing, collecting, connecting and delivering in a transdisciplinary approach the needed knowledge, insights, tooling, principles, designs, infrastructures and action-perspectives for a climate-proof, drought-resilient, and water-sensitive built environment.Dorstige Steden: Handelingsperspectieven voor een klimaatbestendige, droogteweerbare, en waterrobuuste bebouwde omgeving.De Nederlandse bebouwde omgeving is herhaaldelijk geraakt door droogte, met financiële, ecologische en maatschappelijke effecten. Klimaatverandering en stedelijke ontwikkelingen zullen het droogte-risico naar verwachting doen toenemen. Alhoewel overheden droogte als een risico erkennen, hebben weinigen zich daarop voorbereid. Gebrek aan inzicht in de stedelijke waterbalans onder droogte, de kwetsbaarheid van stedelijke watergebruikers, onduidelijkheid in rol en verantwoordelijkheid van betrokken actoren, en ontbrekende handelingsperspectieven liggen hieraan ten grondslag. ‘Dorstige Steden’ draagt middels trans-disciplinair onderzoek bij aan een klimaatbestendige, droogteweerbare, en waterrobuuste bebouwde omgeving door de benodigde kennis, inzichten, instrumentaria, principes en ontwerpen te ontwikkelen, verzamelen en verbinden en handelingsperspectieven te formuleren.