Service of SURF
© 2025 SURF
Exploratory analyses are an important first step in psychological research, particularly in problem-based research where various variables are often included from multiple theoretical perspectives not studied together in combination before. Notably, exploratory analyses aim to give first insights into how items and variables included in a study relate to each other. Typically, exploratory analyses involve computing bivariate correlations between items and variables and presenting them in a table. While this is suitable for relatively small data sets, such tables can easily become overwhelming when datasets contain a broad set of variables from multiple theories. We propose the Gaussian graphical model as a novel exploratory analyses tool and present a systematic roadmap to apply this model to explore relationships between items and variables in environmental psychology research. We demonstrate the use and value of the Gaussian graphical model to study relationships between a broad set of items and variables that are expected to explain the effectiveness of community energy initiatives in promoting sustainable energy behaviors.
LINK
The capacity to deal with digital transformation is a valuable asset for established organizations, and employees play a crucial role in this process. This study contributes to the understanding of employees’ sensemaking of digital transformation in the tour operating industry. Using prior digital transformation research, construal-level theory (CLT), and dynamic change perspectives, our scholarly work focuses on the complexities of organizational change in a digital transformation context. Although employees generally support digital transformation, our findings show that their perceptions change over time across a range of specific challenges experienced during the employee change journey. Our findings stress the importance of adopting a social exchange lens in digital transformation knowledge as this represents deep structure change that might cause well-designed transformation processes to fail. Implications for hospitality and tourism management are discussed.
MULTIFILE
Section snippetsClosing observationsThe overview of the articles presented in this special issue demonstrates that sport psychology does indeed represent a very broad domain of investigation and application. When reading the articles, one will observe that a spectrum of different approaches are applied, ranging from approaches that lean toward the ‘hard’ sciences (such as the experimental study of perceptual anticipation), to approaches that lean toward the ‘soft’ sciences (such as the descriptive study of problems facingPeter Jan Beek, Ph.D., is Full Professor of Coordination Dynamics and the Dean of the Faculty of Behavioural and Movement Sciences at the Vrije Universiteit Amsterdam. His research focuses on the control and coordination of human movement and changes therein as a function of development, learning and rehabilitation. Recurrent topics in his research are the perceptual guidance of movements and the role of practice, feedback and instruction in skill acquisition.
Lack of physical activity in urban contexts is an increasing health risk in The Netherlands and Brazil. Exercise applications (apps) are seen as potential ways of increasing physical activity. However, physical activity apps in app stores commonly lack a scientific base. Consequently, it remains unknown what specific content messages should contain and how messages can be personalized to the individual. Moreover, it is unknown how their effects depend on the physical urban environment in which people live and on personal characteristics and attitudes. The current project aims to get insight in how mobile personalized technology can motivate urban residents to become physically active. More specifically, we aim to gain insight into the effectiveness of elements within an exercise app (motivational feedback, goal setting, individualized messages, gaming elements (gamification) for making people more physically active, and how the effectiveness depends on characteristics of the individual and the urban setting. This results in a flexible exercise app for inactive citizens based on theories in data mining, machine learning, exercise psychology, behavioral change and gamification. The sensors on the mobile phone, together with sensors (beacons) in public spaces, combined with sociodemographic and land use information will generate a massive amount of data. The project involves analysis in two ways. First, a unique feature of our project is that we apply machine learning/data mining techniques to optimize the app specification for each individual in a dynamic and iterative research design (Sequential Multiple Assignment Randomised Trial (SMART)), by testing the effectiveness of specific messages given personal and urban characteristics. Second, the implementation of the app in Sao Paolo and Amsterdam will provide us with (big) data on use of functionalities, physical activity, motivation etc. allowing us to investigate in detail the effects of personalized technology on lifestyle in different geographical and cultural contexts.
Lack of physical activity in urban contexts is an increasing health risk in The Netherlands and Brazil. Exercise applications (apps) are seen as potential ways of increasing physical activity. However, physical activity apps in app stores commonly lack a scientific base. Consequently, it remains unknown what specific content messages should contain and how messages can be personalized to the individual. Moreover, it is unknown how their effects depend on the physical urban environment in which people live and on personal characteristics and attitudes. The current project aims to get insight in how mobile personalized technology can motivate urban residents to become physically active. More specifically, we aim to gain insight into the effectiveness of elements within an exercise app (motivational feedback, goal setting, individualized messages, gaming elements (gamification) for making people more physically active, and how the effectiveness depends on characteristics of the individual and the urban setting. This results in a flexible exercise app for inactive citizens based on theories in data mining, machine learning, exercise psychology, behavioral change and gamification. The sensors on the mobile phone, together with sensors (beacons) in public spaces, combined with sociodemographic and land use information will generate a massive amount of data. The project involves analysis in two ways. First, a unique feature of our project is that we apply machine learning/data mining techniques to optimize the app specification for each individual in a dynamic and iterative research design (Sequential Multiple Assignment Randomised Trial (SMART)), by testing the effectiveness of specific messages given personal and urban characteristics. Second, the implementation of the app in Sao Paolo and Amsterdam will provide us with (big) data on use of functionalities, physical activity, motivation etc. allowing us to investigate in detail the effects of personalized technology on lifestyle in different geographical and cultural contexts.