Recalling that a majority of those who need assistive technology do not have access to it, and that this has a significant impact on the education, livelihood, health and well-being of individuals, and on families, communities and societies, Member States adopted a resolution on Improving access to assistive technology during the 71st World Health Assembly in May 2018. Among other mandates, Member States requested the Director-General of the World Health Organization (WHO) to prepare a global report on effective access to assistive technology in the context of an integrated approach, based on the best available scientific evidence and international experience, with the participation of all levels within the organization and in collaboration with all relevant stakeholders. In fulfilling this commitment, aiming to improve access to assistive technology, this global report: • presents the first comprehensive data set of its kind and analysis of current assistive technology access; • draws the attention of governments and civil societies to the need for, and benefits of, assistive technology, including its return on investment; • makes recommendations for concrete actions that will improve access; • supports implementation of the UN Convention on the Rights of Persons with Disabilities; and • contributes towards achieving the Sustainable Development Goals, especially in making universal health coverage (UHC) inclusive – leaving no one behind. The global report explores assistive technology from a variety of perspectives.
DOCUMENT
Ambient intelligence technologies are a means to support ageing-in-place by monitoring clients in the home. In this study, monitoring is applied for the purpose of raising an alarm in an emergency situation, and thereby, providing an increased sense of safety and security. Apart from these technological solutions, there are numerous environmental interventions in the home environment that can support people to age-in-place. The aim of this study was to investigate the needs and motives, related to ageing-in-place, of the respondents receiving ambient intelligence technologies, and to investigate whether, and how, these technologies contributed to aspects of ageing-in-place. This paper presents the results of a qualitative study comprised of interviews and observations of technology and environmental interventions in the home environment among 18 community-dwelling older adults with a complex demand for care.
DOCUMENT
The purpose of this paper is to reflect on the experiences of safety and security management students, enrolled in an undergraduate course in the Netherlands, and present quantitative data from an online survey that aimed to explore the factors that have contributed to students’ satisfaction with, and engagement in, online classes during the COVID-19 pandemic. The main findings suggest an interesting paradox of technology, which is worth further exploration in future research. Firstly, students with self perceived higher technological skill levels tend to reject online education more often as they see substantial shortcomings of classes in the way they are administered as compared to the vast available opportunities for real innovation. Secondly, as opposed to democratising education and allowing for custom-made, individualistic education schedules that help less-privileged students, online education can also lead to the displacement of education by income-generating activities altogether. Lastly, as much as technology allowed universities during the COVID-19 pandemic to continue with education, the transition to the environment, which is defined by highly interactive and engaging potential, may in fact be a net contributor to the feelings of social isolation, digital educational inequality and tension around commercialisation in higher education.
MULTIFILE
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.
The project’s aim is to foster resilient learning environments, lessen early school leaving, and give European children (ages 4 -6) a good start in their education while providing and advancing technical skills in working with technology that will serve them well in life. For this purpose, the partnership has developed age appropriate ICT animation tools and games - as well as pedagogical framework specific to the transition phase from kindergarten to school.
The utilization of drones in various industries, such as agriculture, infrastructure inspection, and surveillance, has significantly increased in recent years. However, navigating low-altitude environments poses a challenge due to potential collisions with “unseen” obstacles like power lines and poles, leading to safety concerns and equipment damage. Traditional obstacle avoidance systems often struggle with detecting thin and transparent obstacles, making them ill-suited for scenarios involving power lines, which are essential yet difficult to perceive visually. Together with partners that are active in logistics and safety and security domains, this project proposal aims at conducting feasibility study on advanced obstacle detection and avoidance system for low-flying drones. To that end, the main research question is, “How can AI-enabled, robust and module invisible obstacle avoidance technology can be developed for low-flying drones? During this feasibility study, cutting-edge sensor technologies, such as LiDAR, radar, camera and advanced machine learning algorithms will be investigated to what extent they can be used be to accurately detect “Not easily seen” obstacles in real-time. The successful conclusion of this project will lead to a bigger project that aims to contribute to the advancement of drone safety and operational capabilities in low-altitude environments, opening new possibilities for applications in industries where low-flying drones and obstacle avoidance are critical.