DOI:https://doi.org/10.14261/postit/F20ECDBA-3106-4133-9EE0714DBAA65B51In 2015 and 2016, Saxion University of Applied Sciences organized the 2nd and 3rd edition of the Regional Innovation and Entrepreneurship Conference (RIEC). The book that is in front of you now is the result of these two conferences and consists of a number of keynote speeches as well as selected articles that were presented during the different sessions of the conference. The goal of the RIEC is to add some thoughts to the debate about the influence of innovation and entrepreneurship on regional economic development and vice versa.
MULTIFILE
Pokémon Go, Facebook check-ins, Google Maps, public transport apps and especially smartphone apps are increasingly becoming traceable and locatable. As ‘check-in’, features in social media and games grow in popularity they pinpoint users in relation to everything else in the network, making physical context an essential input for online interactions. But what are the practical consequences of the increased proliferation of devices that can determine our location? Could one say that surveillance is already taken for granted as we passively provide our coordinates to others?
MULTIFILE
In the SensEQuake project, the Research Centre for Built Environment NoorderRuimte of Hanze University of Applied Sciences, StabiAlert, Target Holding and NHL Stenden Leeuwarden are investigating the following question:How can we provide relevant and understandable information to support decision makers when an earthquake has occurred?In case of a crisis such as an earthquake, parties such as the provincial government, large company sites, airports or hospitals need information on the scope and severity of the effect of the crisis.Systematic updates of the actual situation on site are of the essence for emergency services. At present only a small amount of the data necessary for this information needed is being collected. And the data that is collected is not processed into relevant and easily understandable information for the decision makers. This project aims to fill this gap.The objective of the project is to integrate the existing sensor technologies into a decision support system, allowing a wider and more immediate use of sensor data for public interest, particularly in crisis times.A heat-map will be produced based on scenario earthquakes and loss (hazard and risk assessment) estimation tools. After running several scenario quakes, critical points in respect to the expected damages and the distribution of existing sensors will be defined. More sensors in critical locations will also be placed to create a high enough resolution.
In recent years, frequent earthquakes have been reported in the Groningen region due to gas extraction. The building stock of the region mainly consists of brick masonry structures which were built without any seismic design taken into consideration. Therefore, these structures are extremely vulnerable to the loads coming from the earthquakes hitting the Groningen area on a regular basis. Numerous damage claims for damages on structures arise after every earthquake. In order to protect and reassure the structural integrity of the numerous brick masonry structures (more than 14.000 lay in the seismic zone), innovative solutions need to be developed. One of the approaches is to strengthen these houses extensively, up to a level that earthquake forces do not affect the original structure. This approach results in heavy and most of the times ugly strengthening solutions. A promising technology seems to be the installation of a vibration isolating concrete at the foundation level in order to decrease the vibration demands to the structures during the earthquake events. This latter method has been developed by the partner of this project, Nederboom, and will be investigated further for its advantages over the conventional techniques in terms of efficacy, applicability and cost. The aim of the proposed project is to carry out an experimental campaign to provide the essential experimental background to introduce and validate the effectiveness of this technology when repeated earthquake loads are applied several times on a brick masonry structural component. The experiments will be performed at the testing facilities of BuildinG, partner of the project, and will be supervised by members of the Earthquake Research Group of Hanze University of Applied Sciences.
In recent years, frequent earthquakes have been reported in the Groningen region due to gas extraction. The building stock of the region mainly consists of brick masonry structures which were built without any seismic design taken into consideration. Therefore, these structures are extremely vulnerable to the loads coming from the earthquakes hitting the Groningen area on a regular basis. Numerous damage claims for damages on structures arise after every earthquake. In order to protect and reassure the structural integrity of the numerous brick masonry structures (more than 14.000 lay in the seismic zone), innovative solutions need to be developed. One of the approaches is to strengthen these houses extensively, up to a level that earthquake forces do not affect the original structure. This approach results in heavy and most of the times ugly strengthening solutions. A promising technology seems to be the installation of a vibration isolating concrete at the foundation level in order to decrease the vibration demands to the structures during the earthquake events. This latter method has been developed by the partner of this project, Nederboom, and will be investigated further for its advantages over the conventional techniques in terms of efficacy, applicability and cost. The aim of the proposed project is to carry out an experimental campaign to provide the essential experimental background to introduce and validate the effectiveness of this technology when repeated earthquake loads are applied several times on a brick masonry structural component. The experiments will be performed at the testing facilities of BuildinG, partner of the project, and will be supervised by members of the Earthquake Research Group of Hanze University of Applied Sciences.