Since the early work on defining and analyzing resilience in domains such as engineering, ecology and psychology, the concept has gained significant traction in many fields of research and practice. It has also become a very powerful justification for various policy goals in the water sector, evident in terms like flood resilience, river resilience, and water resilience. At the same time, a substantial body of literature has developed that questions the resilience concept's systems ontology, natural science roots and alleged conservatism, and criticizes resilience thinking for not addressing power issues. In this study, we review these critiques with the aim to develop a framework for power-sensitive resilience analysis. We build on the three faces of power to conceptualize the power to define resilience. We structure our discussion of the relevant literature into five questions that need to be reflected upon when applying the resilience concept to social–hydrological systems. These questions address: (a) resilience of what, (b) resilience at what scale, (c) resilience to what, (d) resilience for what purpose, and (e) resilience for whom; and the implications of the political choices involved in defining these parameters for resilience building or analysis. Explicitly considering these questions enables making political choices explicit in order to support negotiation or contestation on how resilience is defined and used.
MULTIFILE
Real-time location systems (RTLS) can be implemented in aged care for monitoring persons with wandering behaviour and asset management. RTLS can help retrieve personal items and assistive technologies that when lost or misplaced may have serious financial, economic and practical implications. Various ethical questions arise during the design and implementation phases of RTLS. This study investigates the perspectives of various stakeholders on ethical questions regarding the use of RTLS for asset management in nursing homes. Three focus group sessions were conducted concerning the needs and wishes of (1) care professionals; (2) residents and their relatives; and (3) researchers and representatives of small and medium-sized enterprises (SMEs). The sessions were transcribed and analysed through a process of open, axial and selective coding. Ethical perspectives concerned the design of the system, the possibilities and functionalities of tracking, monitoring in general and the user-friendliness of the system. In addition, ethical concerns were expressed about security and responsibilities. The ethical perspectives differed per focus group. Aspects of privacy, the benefit of reduced search times, trust, responsibility, security and well-being were raised. The main focus of the carers and residents was on a reduced burden and privacy, whereas the SMEs stressed the potential for improving products and services. Original article at MDPI: https://doi.org/10.3390/info9040080
MULTIFILE
Sustainable and Agile manufacturing is expected of future generation manufacturing systems. The goal is to create scalable, reconfigurable and adaptable manufacturing systems which are able to produce a range of products without new investments into new manufacturing equipment. This requires a new approach with a combination of high performance software and intelligent systems. Other case studies have used hybrid and intelligent systems in software before. However, they were mainly used to improve the logistic processes and are not commonly used within the hardware control loop. This paper introduces a case study on flexible and hybrid software architecture, which uses prototype manufacturing machines called equiplets. These systems should be applicable for the industry and are able to dynamically adapt to changes in the product as well as changes in the manufacturing systems. This is done by creating self-configurable machines which use intelligent control software, based on agent technology and computer vision. The requirements and resulting technologies are discussed using simple reasoning and analysis, leading to a basic design of a software control system, which is based on a hybrid distributed control system
The pipelines are buried structures. They move together with the soil during a seismic event. They are affected from ground motions. The project aims to find out the possible effects of Groningen earthquakes on pipelines of Loppersum and Slochteren.This project is devised for conducting an initial probe on the available data to see the possible actions that can be taken, initially on these two pilot villages, Loppersum and Slochteren, for detecting the potential relationship between the past damages and the seismic activity.Lifeline infrastructure, such as water mains and sewerage systems, covering our urbanised areas like a network, are most of the times, sensitive to seismic actions. This sensitivity can be in the form of extended damage during seismic events, or other collateral damages, such as what happened in Christchurch Earthquakes in 2011 in New Zealand when the sewerage system of the city was filled in with tonnes of sand due to liquefaction.Regular damage detection is one of key solutions for operational purposes. The earthquake mitigation, however, needs large scale risk studies with expected spatial distribution of damages for varying seismic hazard levels.
‘Dieren in de dijk’ aims to address the issue of animal burrows in earthen levees, which compromise the integrity of flood protection systems in low-lying areas. Earthen levees attract animals that dig tunnels and cause damages, yet there is limited scientific knowledge on the extent of the problem and effective approaches to mitigate the risk. Recent experimental research has demonstrated the severe impact of animal burrows on levee safety, raising concerns among levee management authorities. The consortium's ambition is to provide levee managers with validated action perspectives for managing animal burrows, transitioning from a reactive to a proactive risk-based management approach. The objectives of the project include improving failure probability estimation in levee sections with animal burrows and enhancing risk mitigation capacity. This involves understanding animal behavior and failure processes, reviewing existing and testing new deterrence, detection, and monitoring approaches, and offering action perspectives for levee managers. Results will be integrated into an open-access wiki-platform for guidance of professionals and in education of the next generation. The project's methodology involves focus groups to review the state-of-the-art and set the scene for subsequent steps, fact-finding fieldwork to develop and evaluate risk reduction measures, modeling failure processes, and processing diverse quantitative and qualitative data. Progress workshops and collaboration with stakeholders will ensure relevant and supported solutions. By addressing the knowledge gaps and providing practical guidance, the project aims to enable levee managers to effectively manage animal burrows in levees, both during routine maintenance and high-water emergencies. With the increasing frequency of high river discharges and storm surges due to climate change, early detection and repair of animal burrows become even more crucial. The project's outcomes will contribute to a long-term vision of proactive risk-based management for levees, safeguarding the Netherlands and Belgium against flood risks.
Human kind has a major impact on the state of life on Earth, mainly caused by habitat destruction, fragmentation and pollution related to agricultural land use and industrialization. Biodiversity is dominated by insects (~50%). Insects are vital for ecosystems through ecosystem engineering and controlling properties, such as soil formation and nutrient cycling, pollination, and in food webs as prey or controlling predator or parasite. Reducing insect diversity reduces resilience of ecosystems and increases risks of non-performance in soil fertility, pollination and pest suppression. Insects are under threat. Worldwide 41 % of insect species are in decline, 33% species threatened with extinction, and a co-occurring insect biomass loss of 2.5% per year. In Germany, insect biomass in natural areas surrounded by agriculture was reduced by 76% in 27 years. Nature inclusive agriculture and agri-environmental schemes aim to mitigate these kinds of effects. Protection measures need success indicators. Insects are excellent for biodiversity assessments, even with small landscape adaptations. Measuring insect biodiversity however is not easy. We aim to use new automated recognition techniques by machine learning with neural networks, to produce algorithms for fast and insightful insect diversity indexes. Biodiversity can be measured by indicative species (groups). We use three groups: 1) Carabid beetles (are top predators); 2) Moths (relation with host plants); 3) Flying insects (multiple functions in ecosystems, e.g. parasitism). The project wants to design user-friendly farmer/citizen science biodiversity measurements with machine learning, and use these in comparative research in 3 real life cases as proof of concept: 1) effects of agriculture on insects in hedgerows, 2) effects of different commercial crop production systems on insects, 3) effects of flower richness in crops and grassland on insects, all measured with natural reference situations